Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:
\(x^2+xy+y^2=\frac{3}{4}(x^2+2xy+y^2)+\frac{1}{4}(x^2-2xy+y^2)\)
\(=\frac{3}{4}(x+y)^2+\frac{1}{4}(x-y)^2\geq \frac{3}{4}(x+y)^2\)
\(\Rightarrow \sqrt{x^2+xy+y^2}\geq \frac{\sqrt{3}(x+y)}{2}\)
Hoàn toàn tương tự:
\(\sqrt{y^2+yz+z^2}\geq \frac{\sqrt{3}(y+z)}{2}; \sqrt{z^2+xz+x^2}\geq \frac{\sqrt{3}(x+z)}{2}\)
Cộng theo vế các BĐT trên:
\(\Rightarrow \sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\geq \sqrt{3}(x+y+z)\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z$
Bài 2:
BĐT cần chứng minh tương đương với:
$4(a^9+b^9)-(a+b)(a^3+b^3)(a^5+b^5)\geq 0$
$\Leftrightarrow 4(a+b)(a^8-a^7b+a^6b^2-a^5b^3+a^4b^4-a^3b^5+a^2b^6-ab^7+b^8)-(a+b)(a^8+a^3b^5+a^5b^3+b^8)\geq 0$
$\Leftrightarrow 4(a^8-a^7b+a^6b^2-a^5b^3+a^4b^4-a^3b^5+a^2b^6-ab^7+b^8)-(a^8+a^3b^5+a^5b^3+b^8)\geq 0$
$\Leftrightarrow 3a^8+3b^8+4a^6b^2+4a^2b^6+4a^4b^4-(4a^7b+4ab^7+5a^5b^3+5a^3b^5)\geq 0$
$\Leftrightarrow (a-b)^2(a^2-ab+b^2)(3a^4+5a^3b+7a^2b^2+5ab^3+3b^4)\geq 0$
BĐT trên luôn đúng vì:
$(a-b)^2\geq 0, \forall a,b$
$a^2-ab+b^2=(a-\frac{b}{2})^2+\frac{3}{4}b^2\geq 0, \forall a,b$
$3a^4+5a^3b+7a^2b^2+5ab^3+3b^4=3(a^4+b^4+2a^2b^2)+a^2b^2+5ab(a^2+b^2)$
$=3(a^2+b^2)^2+5ab(a^2+b^2)+a^2b^2$
$=(a^2+b^2)(3a^2+3b^2+5ab)+a^2b^2=(a^2+b^2)[3(a+\frac{5}{6}b)^2+\frac{11}{12}b^2]+a^2b^2\geq 0$ với mọi $a,b$
Do đó ta có đpcm.
Dấu "=" xảy ra khi $a=b$ hoặc $a+b=0$
\(3x^2+5y^2-2x-2xy+1\)
\(=\left(x^2-2x+1\right)+\left(x^2-2xy+y^2\right)+x^2+4y^2\)
\(=\left(x-1\right)^2+\left(x-y\right)^2+x^2+4y^2\ge0\forall x:y\)
Do dấu bằng không xảy ra \(\Rightarrow\left(x+1\right)^2+\left(x-y\right)^2+x^2+4y^2>0\forall x:y\)
Text
Lời giải:
Do $xyz=1$ nên tồn tại $a,b,c>0$ sao cho $(x,y,z)=(\frac{a}{b}, \frac{b}{c}, \frac{c}{a})$
Khi đó bài toán trở thành:
Cho $a,b,c>0$. CMR: \(2\left(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}\right)-\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)\geq 3\)
\(\Leftrightarrow \frac{2(a^3+b^3+c^3)-(a^2b+b^2c+c^2a)}{abc}\geq 3\)
\(\Leftrightarrow 2(a^3+b^3+c^3)\geq a^2b+b^2c+c^2a+3abc(*)\)
---------------
Áp dụng BĐT AM-GM:
\(a^3+b^3+c^3\geq 3\sqrt[3]{a^3b^3c^3}=3abc(1)\)
Và:
\(\frac{a^3}{3}+\frac{a^3}{3}+\frac{b^3}{3}\geq 3\sqrt[3]{\frac{a^6b^3}{3^3}}=a^2b\)
\(\frac{b^3}{3}+\frac{b^3}{3}+\frac{c^3}{3}\geq 3\sqrt[3]{\frac{b^6c^3}{3^3}}=b^2c\)
\(\frac{c^3}{3}+\frac{a^3}{3}+\frac{a^3}{3}\geq 3\sqrt[3]{\frac{c^6a^3}{3^3}}=c^2a\)
Cộng theo vế và rút gọn \(\Rightarrow a^3+b^3+c^3\geq a^2b+b^2c+c^2a(2)\)
Lấy $(1)+(2)$ ta thu được $(*)$
Do đó ta có đpcm
Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$
Đặt \(\left(x;y;z\right)=\left(\frac{a'}{b'};\frac{b'}{c'};\frac{c'}{a'}\right)\).Cần chứng minh:
\(2\left(\frac{a'^2}{b'c'}+\frac{b'^2}{c'a'}+\frac{c'^2}{a'b'}\right)-\left(\frac{b'}{a'}+\frac{c'}{b'}+\frac{a'}{c'}\right)\)
Đặt \(\left(\frac{a'}{b'};\frac{b'}{c'};\frac{c'}{a'}\right)=\left(a;b;c\right)\). Bây giờ bài toán trở nên dễ dàng hơn:
Cho a, b, c > 0 thỏa mãn abc = 1. Chứng minh rằng \(2\left(ab+bc+ca\right)-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\). Rất hiển nhiên điều này đúng theo AM-GM: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=3\)
Ta có điều phải chứng minh.
Is that true? Nếu nó đúng, em nghĩ bài này mấu chốt là nhìn ra cách đặt đầu tiên, và một chút may mắn:)
lớp 8 thì còn lằng nhằng lớp 10 quá đơn giản
\(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{1}{3}\)
(\(a^2\)+\(b^2\)).(\(x^2\)+\(y^2\))>= (ax+by)^2
<=> \(a^2\).\(x^2\)+\(a^2\).\(y^2\)+\(b^2\).\(x^2\)+\(b^2\).\(y^2\)>=\(a^2\).\(x^2\)+2axby+\(b^2\).\(y^2\)
<=> \(a^2\).\(y^2\)- 2aybx+\(b^2\).\(x^2\)>=0
<=> (ay-bx)^2>=0 (luôn đúng)
vậy(\(a^2\)+\(b^2\)).(\(x^2\)+\(y^2\))>=(ax+by)^2
ta có : \(x^2+y^2+z^2+x^2y^2z^2-4xyz+y^2z^2-2yz+1\ge0\)
\(\Leftrightarrow\left(y^2-2yz+z^2\right)+\left(x^2-2xyz+y^2z^2\right)+\left(x^2y^2z^2-2xyz+1\right)\ge0\)
\(\Leftrightarrow\left(y-z\right)^2+\left(x-yz\right)^2+\left(xyz-1\right)^2\ge0\) (đúng \(\forall x;y;z\))
\(\Rightarrow\) (đpcm)
Đặt \(f\left(x\right)=x^2y^4-4xy^3+2x^2y^2+4y^2+4xy+x^2\)
\(f\left(x\right)=\left(y^4+2y^2+1\right)x^2-4\left(y^3-y\right)x+4y^2\)
\(a=y^4+2y^2+1>0;\forall y\)
\(\Delta'=4\left(y^3-y\right)^2-4y^2\left(y^4+2y^2+1\right)\)
\(=4y^6+4y^2-8y^4-4y^6-8y^4-4y^2=-16y^4\le0;\forall y\)
\(\Rightarrow f\left(x\right)\ge0\) ; \(\forall x;y\)
\(x^2-xy+y^2+1>0\)
\(\Leftrightarrow x^2-xy+\frac{1}{4}y^2+\frac{3}{4}y^2+1>0\)
\(\Leftrightarrow\left(x^2-xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2+1>0\)
\(\Leftrightarrow\left[x^2-2\cdot x\cdot\frac{1}{2}y+\left(\frac{1}{2}y\right)^2\right]+\frac{3}{4}y^2+1>0\)
\(\Leftrightarrow\left(x-\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)( đúng với ∀ x, y ∈ R )
=> đpcm