K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
8 tháng 1 2017
\(A=n^2\left(n^4-n^2+2n+2\right)=n^2\left(n^2+2n+1\right)\left(n^2-2n+2\right)\)
\(A=n^2.\left(n+1\right)^2.\left[\left(n-1\right)^2+1\right]\) có \(\left(n-1\right)^2+1\) chỉ là số CP phương khi n=1
Vậy với n>1 A không thể Cp
NL
0
T
0
9 tháng 6 2017
a) Bình phương 2 vế được: \(\frac{4ab}{a+b+2\sqrt{ab}}\le\sqrt{ab}\)
<=> \(4ab\le\sqrt{ab}\left(a+b\right)+2ab\)
<=>\(\sqrt{ab}\left(a+b\right)\ge2ab\)
<=>\(a+b\ge2\sqrt{ab}\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)
Vậy \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)
a) GIA SU n=3 (dung) 8>7
gia su dung voi moi k thuocN* (k>=3)
suy ra 2^k>2k+1 (k>=3)
\(2^{k+1}=2^k+2^k\)
<=>\(2^{k+1}>2\left(2k+1\right)\)
<=>\(2^{k+1}>4k+2\)
(2k>1 voi k>=3)=>\(4k+2>2k+3\)
<=>\(2^{k+1}>2k+3\)dung voi moi k thuoc N* (k>=3)
b) tuong tu