K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=\(\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}\right)\)+\(\left(\dfrac{1}{6}-\dfrac{1}{7}\right)\)+...+\(\left(\dfrac{1}{98}-\dfrac{1}{99}\right)\)

Biểu thức trong dấu ngoặc thứ nhất bằng\(\dfrac{13}{60}\) nên lớn hơn \(\dfrac{12}{60}\),tức là lớn hơn 0,2,còn các dấu ngoặc sau đều dương,do đó A>0,2.

Để chứng minh A < \(\dfrac{2}{5}\),ta viết:

A=\(\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}\right)-\left(\dfrac{1}{7}-\dfrac{1}{8}\right)-...-\left(\dfrac{1}{97}-\dfrac{1}{98}\right)-\dfrac{1}{99}\)

Biểu thức trong dấu ngoặc thứ nhất nhỏ hơn \(\dfrac{2}{5}\),còn các dấu ngoặc đều dương,do đó A <\(\dfrac{2}{5}\)

Chúc bạn học giỏi!ok

12 tháng 4 2017

\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)

\(B< 1-\dfrac{1}{8}=\dfrac{7}{8}< 1\)

mink nhanh nhất đó bạn,

4 tháng 5 2018

ta có :

\(\dfrac{1}{2^2}< \dfrac{1}{1\times2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\times3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3\times4}\)

. . . . . . .

\(\dfrac{1}{8^2}< \dfrac{1}{7\times8}\)

_________________________________

\(\Rightarrow\)\(B< \)\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{7.8}\right)\)

\(\Rightarrow B< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{7}-\dfrac{1}{8}\)

\(\Rightarrow B< 1-\dfrac{1}{8}\)

\(\Rightarrow B< 1\)

\(\Rightarrowđpcm\)

Ta có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{2^2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)\(=\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{9}=\dfrac{23}{36}< \dfrac{32}{36}=\dfrac{8}{9}\). (1)

Ta lại có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2^2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{10}=\dfrac{19}{20}>\dfrac{8}{20}=\dfrac{2}{5}\). (2)

Từ (1) và (2) suy ra đpcm.

1 tháng 4 2022

Hay quá

 

15 tháng 5 2018

a) Giải

Đặt \(M=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\)

\(\Rightarrow A< A.M\)

hay \(A< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\right)\)

\(\Rightarrow A< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}.\dfrac{6}{7}...\dfrac{98}{99}.\dfrac{99}{100}\)

\(\Leftrightarrow A< \dfrac{1.2.3.4.5.6...98.99}{2.3.4.5.6.7...99.100}\)

\(\Rightarrow A< \dfrac{1}{100}< \dfrac{1}{10}\)

Vậy \(A< \dfrac{1}{10}\)

24 tháng 3 2018

Ta có:\(A=\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{98}{99}\)

\(A< \dfrac{3}{4}\cdot\dfrac{5}{6}\cdot\dfrac{7}{8}\cdot...\cdot\dfrac{99}{100}\)

\(\Rightarrow A^2< \dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot\dfrac{5}{6}\cdot\dfrac{6}{7}\cdot\dfrac{7}{8}\cdot...\cdot\dfrac{98}{99}\cdot\dfrac{99}{100}\)

\(A^2< \dfrac{2}{100}=\dfrac{1}{50}\)

\(\dfrac{1}{50}< \dfrac{1}{49}\)

\(\Rightarrow A^2< \dfrac{1}{49}\)

\(\Rightarrow A< \dfrac{1}{7}\left(đpcm\right)\)

\(A=\dfrac{\left(3+\dfrac{2}{15}+\dfrac{1}{5}\right):\dfrac{5}{2}}{\left(5+\dfrac{3}{7}-2-\dfrac{1}{4}\right):\left(4+\dfrac{43}{56}\right)}\)

\(=\dfrac{\dfrac{10}{3}\cdot\dfrac{2}{5}}{\dfrac{89}{28}:\dfrac{267}{56}}=\dfrac{4}{3}:\dfrac{2}{3}=2\)

\(B=\dfrac{\dfrac{6}{5}:\left(\dfrac{6}{5}\cdot\dfrac{5}{4}\right)}{\dfrac{8}{25}+\dfrac{2}{25}}=\dfrac{\dfrac{6}{5}:\dfrac{3}{2}}{\dfrac{2}{5}}=2\)

Do đó: A=B

12 tháng 5 2017

Đặt

A = \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{99^2}\)

= \(\dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+...+\dfrac{1}{99.99}\)

\(\dfrac{1}{3.3}< \dfrac{1}{2.3}\)

\(\dfrac{1}{4.4}< \dfrac{1}{3.4}\)

................

\(\dfrac{1}{99.99}< \dfrac{1}{98.99}\)

=> A < \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{98.99}\)

A < \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}\)

A < \(\dfrac{1}{2}-\dfrac{1}{99}\)

A < \(\dfrac{97}{198}< \dfrac{99}{198}\)=\(\dfrac{1}{2}\)

=> A < \(\dfrac{1}{2}\)

=> \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{99^2}\)< \(\dfrac{1}{2}\) < đpcm>

11 tháng 5 2017

\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}< \dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}\)

\(=\dfrac{1}{2}-\dfrac{1}{99}< \dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}< \dfrac{1}{2}\left(đpcm\right)\)

Vậy...

7 tháng 3 2018

Vì mỗi thừa số ( phân số ) trong tích D đều > 1

=> tích D < 1 < 10

=> D < 10