K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2019

Áp dụng hệ quả BĐT Cauchy cho 2 số thực dương ta có

(ab)^2 +(bc)^2 >=2 ab.bc

(bc)^2+(ca)^2 >= 2bc.ca

(ca)^2+(ab)^2 >= 2ca.ab

=> 2(a^2b^2+b^2c^2+c^2a^2)>=2abc(a+b+c)

<=>  a^2b^2+b^2c^2+c^2a^2 >= abc(a+b+c)

Dấu = xảy ra <=> ab=bc=ca <=>a=b=c

30 tháng 11 2019

Áp dụng bất đẳng thức cosi cho lần lượt 3 số không âm là a,b,c ta có :

\(a^2b^2+b^2c^2\ge2b^2ac\)

\(b^2c^2+c^2a^2\ge2c^2ab\)

\(a^2b^2+c^2a^2\ge2a^2bc\)

Cộng lần lượt 3 vế của các bđt trên ta có :

\(2\left(a^2b^2+b^2c^2+c^2a^2\right)\ge2abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\)

ĐPCM

Dấu "=" khi a=b=c

1 tháng 12 2019

Có: \(\frac{a^4}{b^2c}+\frac{b^4}{c^2a}+b\ge\frac{3ab}{c}\)

Tương tự, ta cũng được: \(\Sigma_{cyc}\frac{a^4}{b^2c}\ge\frac{3}{2}\Sigma_{cyc}\frac{ab}{c}-\frac{1}{2}\Sigma_{cyc}a\)

Cần CM: \(\Sigma_{cyc}\frac{ab}{c}\ge\Sigma_{cyc}a\)

Có: \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)

Tương tự, ta có đpcm 

Dấu "=" xảy ra khi a=b=c 

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Bài 1:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)[a(b+c)+b(c+a)+c(a+b)]\geq (a+b+c)^2\)

\(\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)}\)$(*)$

Áp dụng BĐT AM-GM dễ thấy: $a^2+b^2+c^2\geq ab+bc+ac$

$\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq \frac{(a+b+c)^2}{3}(**)$

Từ $(*); (**)\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{(a+b+c)^2}{2.\frac{(a+b+c)^2}{3}}=\frac{3}{2}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Bài 2:

Áp dụng BĐT AM-GM:

\(\frac{a^3}{b(2c+a)}+\frac{b}{3}+\frac{2c+a}{9}\geq 3\sqrt[3]{\frac{a^3}{b(2c+a)}.\frac{b}{3}.\frac{2c+a}{9}}=a\)

\(\frac{b^3}{c(2a+b)}+\frac{c}{3}+\frac{2a+b}{9}\geq b\)

\(\frac{c^3}{a(2b+c)}+\frac{a}{3}+\frac{2b+c}{9}\ge c\)

Cộng theo vế và thu gọn ta có:

\(\frac{a^3}{b(2c+a)}+\frac{b^3}{c(2a+b)}+\frac{c^3}{a(2b+c)}\geq \frac{a+b+c}{3}=\frac{3}{3}=1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

NV
9 tháng 2 2020

a/ Với mọi số thực ta luôn có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Lại có do a;b;c là ba cạnh của 1 tam giác nên theo BĐT tam giác ta có:

\(a+b>c\Rightarrow ac+bc>c^2\)

\(a+c>b\Rightarrow ab+bc>b^2\)

\(b+c>a\Rightarrow ab+ac>a^2\)

Cộng vế với vế: \(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)

NV
9 tháng 2 2020

b/

Do a;b;c là ba cạnh của tam giác nên các nhân tử vế phải đều dương

Ta có:

\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{1}{4}\left(a+b-c+b+c-a\right)^2=b^2\)

Tương tự: \(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)

\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)

Nhân vế với vế:

\(a^2b^2c^2\ge\left(a+b-c\right)^2\left(b+c-a\right)^2\left(a+c-b\right)^2\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)

28 tháng 4 2017

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{b+c}{4bc}+\dfrac{1}{2b}\ge3\sqrt[3]{\dfrac{b^2c\left(b+c\right)}{8a^3\left(b+c\right)b^2c}}=\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{c+a}{4ca}+\dfrac{1}{2c}\ge3\sqrt[3]{\dfrac{c^2a\left(c+a\right)}{8b^3\left(c+a\right)c^2a}}=\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{a+b}{4ab}+\dfrac{1}{2a}\ge3\sqrt[3]{\dfrac{a^2b\left(a+b\right)}{8c^3\left(a+b\right)a^2b}}=\dfrac{3}{2c}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{1}{4c}+\dfrac{1}{4b}+\dfrac{1}{2b}\ge\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{1}{4a}+\dfrac{1}{4c}+\dfrac{1}{2c}\ge\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{1}{4b}+\dfrac{1}{4a}+\dfrac{1}{2a}\ge\dfrac{3}{2c}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{1}{4c}+\dfrac{3}{4b}\ge\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{1}{4a}+\dfrac{3}{4c}\ge\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{1}{4b}+\dfrac{3}{4a}\ge\dfrac{3}{2c}\end{matrix}\right.\)

\(\Rightarrow VT+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow VT+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow VT\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ( đpcm )