\(2023^{2024}+2024^{2025}+2025^{2026}\) chia hết cho 10

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2023 mũ 2024+2024 mũ 2025+2025 mũ 2026

Xét 2023 mũ 2024

\(^{2023^{2024}}\)=\(^{2023^{4.501}}\)=(\(^{2023^4}\))\(^{^{501}}\)

Ta có:\(^{2023^4}\)tận cùng là 1

=>2023 mũ 4 tất cả mũ 501 tận cùng là 1

Xét 2024 mũ 2025

2024 mũ 2025=2024 mũ 2 .1012+1=2024 mũ 2.1012 nhân 2024=(2024 mũ 2)mũ 1012.2024

Ta có:2024  mũ 2 tận cùng là 6

=>(2024 mũ 2) tất cả mũ 1012 tận cùng là 6

=>(2024 mũ 2) tất cả mũ 1012 nhân 2024 tận cùng là4

Xét 2025 mũ 2026

2025 mũ 2026

 5 mũ bao nhiêu thì chữ số tận cùng vẫn là 5

=>2025 mũ 2026 tận cùng là 5

Vậy tổng của các chữ số tận cùng là:1+4+5=10 chia hết cho 10

=> Tổng của 2023 mũ 2024+2024 mũ 2025+2025 mũ 2026 chia hết cho 10

Đây là bài áp dụng tính chất tìm chữ số tận cùng

Chúc bn học tốt

20 tháng 10 2019

\(2023^{2024}+2024^{2025}+2025^{2026}\equiv\left(-1\right)^{1012}+\left(-1\right)^{2025}+0\equiv0\)(mod 5)

-> chia hết cho 5

Dễ dàng nhận thấy \(2023^{2024}+2025^{2026}\) là số chẵn mà \(2024^{2025}\)cũng là số chẵn nên chia hết cho 2

Do (2,5) = 1 nên chia hết cho 10

HQ
Hà Quang Minh
Giáo viên
8 tháng 10 2023

a) \(2021 + 2022 + 2023 + 2024 + 2025 + 2026 + 2027 + 2028 + 2029\)

\(\begin{array}{l} = \left( {2021 + 2029} \right) + \left( {2022 + 2028} \right) + \left( {2023 + 2027} \right) + \left( {2024 + 2026} \right) + 2025\\ = 4050 + 4050 + 4050 + 4050 + 2025\\ = 4050.4 + 2025\\ = 16200 + 2025\\ = 18225\end{array}\)

b) Cách 1:

\(30.40.50.60 =(30.60).(40.50)=1800.2000=3600000\)

Cách 2:

\(\begin{array}{l}30.40.50.60 = 3.10.4.10.5.10.6.10\\ = 3.4.5.6.10000\\ = 3.20.6.10000\\ = 3.2.6.10.10000\\ = 36.100000\\ = 3600000\end{array}\)

20 tháng 9 2023

Số phàn tử:

\(2029-2021+1=9\)

Tổng dãy trên:

\(\left(2029+2021\right)\cdot\dfrac{9}{2}=18225\)

20 tháng 9 2023

Số hạng là:

(2029-2021):1+1=9

Tổng là:(2029+2021).9:2=18225

                          Đáp số :18225

Chúc bạn học tốt nha

1 tháng 11 2024

A = \(\dfrac{1}{2021.2022}\) + \(\dfrac{1}{2022.2023}\) + \(\dfrac{1}{2023.2024}\) + \(\dfrac{1}{2024.2025}\) - \(\dfrac{4}{2021.2025}\)

A = \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\) + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\) + \(\dfrac{1}{2023}\) - \(\dfrac{1}{2024}\) + \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\) - \(\dfrac{1}{2021}\) + \(\dfrac{1}{2025}\)

A = (\(\dfrac{1}{2021}\) - \(\dfrac{1}{2021}\))  + (\(\dfrac{1}{2022}\) - \(\dfrac{1}{2022}\)) + (\(\dfrac{1}{2023}\) - \(\dfrac{1}{2023}\)) + (\(\dfrac{1}{2024}\) - \(\dfrac{1}{2024}\)) + (\(\dfrac{1}{2025}\) - \(\dfrac{1}{2025}\))

A = 0 + 0  +0  + 0+ ... + 0

A = 0

7 tháng 10 2021

a) 2021 + 2022 + 2023 + 2024 + 2025 + 2026 + 2027 + 2028 + 2029

= (2021 + 2029) + (2022 + 2028) + (2023 + 2027) + (2024 + 2026) + 2025

= 4050 + 4050 + 4050 + 4050 + 2025

= 4050.4 + 2025

= 16 200 + 2025 

= 18 225

7 tháng 10 2021

b)

30.40.50.60 = 3.10.4.10.5.10.6.10 = 3.4.5.6.10000 = 3.20.6.10000 = 3.2.6.10.10000 = 36.100000 = 3600000

Lời giải chi tiết

Ta có: chữ số tận cùng của 2021 . 2022 . 2023 . 2024 là chữ số tận cùng của tích 1.2.3.4  (= 24) là chữ số 4.

Tương tự: chữ số tận cùng 2025 . 2026 . 2027 . 2028 . 2029 là chữ số tận cùng của tích 5.6.7.8.9 (= 15120) là chữ số 0.

Vậy chữ số tận cùng của tổng cần tìm là chữ số 4.

30 tháng 9 2021

Ta có: chữ số tận cùng của \(2021.2022.2023.2024\) là chữ số tận cùng của tích \(1.2.3.4\left(=24\right)\) là chữ số 4.

Tương tự: chữ số tận cùng \(2025.2026.2027.2028.2029\) là chữ số tận cùng của tích \(5.6.7.8.9\left(=15120\right)\) là chữ số 0.

Vậy chữ số tận cùng của tổng cần tìm là chữ số \(4\).

TH
Thầy Hùng Olm
Manager VIP
2 tháng 5 2023

B = \(1-\dfrac{1}{2025}\)   \(A=1-\dfrac{1}{2024}\)

Vì \(\dfrac{1}{2025}< \dfrac{1}{2024}\)

Nên B>A

2 tháng 5 2023

Ta có :

\(\dfrac{2023}{2024}\)=\(\dfrac{2024-1}{2024}\)=\(\dfrac{2024}{2024}\)-\(\dfrac{1}{2024}\)=1-\(\dfrac{1}{2024}\)

\(\dfrac{2024}{2025}\)=\(\dfrac{2025-1}{2025}\)=\(\dfrac{2025}{2025}\)-\(\dfrac{1}{2025}\)=1=\(\dfrac{1}{2025}\)

Ta thấy: \(\dfrac{1}{2024}\) lớn hơn \(\dfrac{1}{2025}\)

Nên : \(\dfrac{2023}{2024}\) lớn hơn \(\dfrac{2024}{2025}\)

⇒A lớn hơn B

 

18 tháng 5 2023

Đề có phải là:

\(\dfrac{x+1}{2024}+\dfrac{x+2}{2025}+\dfrac{x+3}{2026}+\dfrac{x+4}{2027}=4\text{ ?}\)

\(\Rightarrow\text{ }\dfrac{x+1}{2024}+\dfrac{x+2}{2025}+\dfrac{x+3}{2026}+\dfrac{x+4}{2027}-4=0\)

\(\Rightarrow\text{ }\dfrac{x+1}{2024}+\dfrac{x+2}{2025}+\dfrac{x+3}{2026}+\dfrac{x+4}{2027}-1-1-1-1=0\)

\(\Rightarrow\left(\dfrac{x+1}{2024}-1\right)+\left(\dfrac{x+2}{2025}-1\right)+\left(\dfrac{x+3}{2026}-1\right)+\left(\dfrac{x+4}{2027}-1\right)=0\)

\(\Rightarrow\left(\dfrac{x+1-2024}{2024}\right)+\left(\dfrac{x+2-2025}{2025}\right)+\left(\dfrac{x+3-2026}{2026}\right)+\left(\dfrac{x+4-2027}{2027}\right)=0\)

\(\Rightarrow\dfrac{x-2023}{2024}+\dfrac{x-2023}{2025}+\dfrac{x-2023}{2026}+\dfrac{x-2023}{2027}=0\)

\(\Rightarrow\left(x-2023\right)\left(\dfrac{1}{2024}+\dfrac{1}{2025}+\dfrac{1}{2026}+\dfrac{1}{2027}\right)=0\)

Mà \(\dfrac{1}{2024}+\dfrac{1}{2025}+\dfrac{1}{2026}+\dfrac{1}{2027}\ne0\)

\(\Rightarrow x-2023=0\)

\(\Rightarrow x=0+2023\)

\(\Rightarrow x=2023\)

Vậy, \(x=2023.\)