Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + y2 + z2 = xy + yz + zx
=>2.(x2+y2+z2)=2.(xy+yz+zx)
<=>2x2+2y2+2z2=2xy+2yz+2zx
<=>2x2+2y2+2z2-2xy-2yz-2zx=0
<=>x2-2xy+y2+y2-2yz+z2+z2-2zx+x2=0
<=>(x-y)2+(y-z)2+(z-x)2=0
<=>x-y=0 và y-x=0 và z-x=0
<=>x=y và y=x và z=x
Vậy x=y=z
\(x^2+y^2+z^2=xy+yz+zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2zx\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Leftrightarrow x=y=z}\)
x^2+y^2+z^2=xy+yz+zx => x^2+y^2+z^2-xy-yz-zx = 0
<=> 2. (x^2+y^2+z^2-xy-yz-zx)=0
<=> (x^2-2xy+y^2) + (y^2-2yz+z^2)+(z^2-2zx+x^2)=0
<=> (x-y)^2 + (y-z)^2 + (z-x))^2 =0
Mà (x-y)^2, (y-z)^2, (z-x)^2 luôn >=0 với mọi x,y,z
=> x-y=y-z=z-x=0
=> x=y=z (ĐPCM)
\(VT=\left(x^4\right)^2+\left(y^4\right)^2+\left(z^4\right)^2\ge\frac{1}{3}\left(x^4+y^4+z^4\right)^2\)
\(VT\ge\frac{1}{27}\left(x^2+y^2+z^2\right)^4=\frac{1}{27}\left(x^2+y^2+z^2\right)^3\left(x^2+y^2+z^2\right)\)
\(VT\ge\frac{1}{27}\left(3\sqrt[3]{x^2y^2z^2}\right)^3\left(xy+yz+zx\right)=x^2y^2z^2\left(xy+yz+zx\right)\)
Dấu "=" xảy ra khi \(x=y=z\)
1,
\(x^2+y^2+z^2=xy+yz+zx\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=2.0=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
<=> x - y = 0
y - z = 0
z - x =0
<=> x=y
y=z
z=x
<=> x=y=z
1)VD:\(X=Y=Z\Leftrightarrow XY+YZ+ZX=X^2+Y^2+Z^2\)
\(\Leftrightarrow X^2+Y^2+Z^2=XY+YZ+ZX\left(1\right)\)
VD:\(X^2+Y^2+Z^2=XY+YZ+ZX\Leftrightarrow2X^2+2Y^2+2Z^2=2XY+2YZ+2ZX\)
\(\Leftrightarrow2X^2+2Y^2+2Z^2-2XY-2YZ-2ZX=0\)
\(\Leftrightarrow\left(X-Y\right)^2+\left(Y-Z\right)^2+\left(Z-X\right)^2=0\left(HĐT\right)\)
\(\Rightarrow X=Y=Z\left(2\right)\)
\(1\&2\Rightarrow X^2+Y^2+Z^2=XY+YZ+ZX\)
\(\Leftrightarrow X=Y=Z\)
2)\(\Rightarrow A+B+C\Rightarrow X=-\left(Y+Z\right)\Rightarrow X^2=\left(Y+Z\right)^2\)
\(\Leftrightarrow X^2=Y^2+2YZ+Z^2\)
\(\Leftrightarrow X^2-Y^2-Z^2=2YZ\)
\(\Leftrightarrow\left(X^2-Y^2-Z^2\right)^2=4Y^2Z^2\)
\(\Leftrightarrow X^4+Y^4+Z^4=2X^2Y^2+2Y^2Z^2+2Z^2X^2\)
\(\Leftrightarrow2\left(X^4+Y^4+Z^2\right)=\left(X^2+Y^2+Z^2\right)^2=A^4\)
\(\Rightarrow X^4+Y^4+Z^4=\frac{A^4}{2}\)
Xin lỗi mk viết nhầm
(x+y+z)2-x2-y2-z2 =x2+y2+z2+2(xy+yz+xz)-x2-y2-z2
(x+y+z)2-x2-y2-z2
=x2+y2+2(xy+yz+xz)-x2-y2-z2
= 2(xy+yz+xz)
Vậy hằng đẳng thức được chứng minh
\(x^2+y^2+z^2=xy+yz+zx\)
\(x^2+y^2+z^2-xy-yz-zx\)=0
Nhân cả 2 vé cho 2 ta được :
\(2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(x^2-2xy+y^2+y^2-2yz+z^2+x^2-2zx+z^2\)=0
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
x-y=0 suy ra x=y
y-z=0suy ra y=z
x-z=0 suy ra x=z
x=y=z
x2+y2+z2=xy+yz+zx
<=>2(x2+y2+z2)=2(xy+yz+zx)
<=>2x2+2y2+2z2=2xy+2yz+2zx
<=>2x2+2y2+2z2-2xy-2yz-2zx=0
<=>(x2-2xy+y2)+(y2-2yz+z2)+(z2-2zx+x2)=0
<=>(x-y)2+(y-z)2+(z-x)2=0
Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Leftrightarrow x=y=z}\)(đpcm)