Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Áp dụng Bất đẳng thức Cauchy cho các số m2,n2,1 không âm ta được:
m2+1>=2m(1)
n2+1>=2n (2)
Từ (1) và (2)=> m2+n2+2>= 2m+2n vs mọi m,n (đpcm)
b/ Ta có: (a-b)2>= 0
<=> a2 +b2-2ab>=0
<=>a2+b2+2ab>=4ab (cộng 2 vế vs 2ab với a>0,b>0)
<=> (a+b)2>= 4ab
<=> a+b >= 4ab/(a+b) (chia 2 vế cho a+b với a>0.b>0)
<=> (a+b)/ab>= 4/(a+b) (3)
Mà: 1/a+1/b=(a+b)/ab (4)
Từ (3) và (4)=> 1/a+1/b>=4/(a+b)
<=> (a+b)(1/a+1/b)>=4 (đpcm)
Mình sẽ chứng minh đề sai nhé :33
\(4m^2-16>0\)
\(\Leftrightarrow4m^2>16\)
\(\Leftrightarrow m^2>4\)
\(\Leftrightarrow\hept{\begin{cases}m\ne0\\m\ne\pm1\\m\ne\pm2\end{cases}}\)
Mà đề bài cho thỏa mãn với \(\forall m\)
\(\Rightarrow\)Đề sai
Em làm nhầm rồi
\(m^2>4\)
<=> \(m>2\)hoặc m < - 2
=> xem lại đề nhé!
Lời giải:
Ở đây ta sẽ xét bài toán trong TH $m,n$ là số tự nhiên .
Cho \(n=4k+2(k\in\mathbb{N})\)
\(\Rightarrow 3^n+1=3^{4k+2}+1=9^{2k+1}+1\vdots 9+1\vdots 5\) (theo hằng đẳng thức đáng nhớ)
Mà \(2^m\) không có ước là $5$
Do đó \(2^m\not\vdots 3^n+1\) với mọi số tự nhiên $m,n>1$
1/
n=2 ta thấy đúng
GS đúng với n=k tức là (1-x)k+(1+x)k<2k
Ta cm đúng với n=k+1
(1-x)k+1+(1+x)k+1< (1-x)k+(1+x)k+(1-x)(1+x)k+(1-x)k(1+x)= 2\(\left(\left(1-x\right)^k+\left(1+x\right)^k\right)\)\(< 2.2^k=2^{k+1}\)
=> giả sử là đúng
theo nguyên lí quy nạp ta có đpcm
ĐK phải là a,b\(\ge0\)
* \(\left(a+b\right)^2=a^2+b^2+2ab\ge a^2+b^2=1\)(Vì 2ab\(\ge0\) với a,b\(\ge0\))
Vậy \(\left(a+b\right)^2\ge1\).\(\Rightarrow a+b\ge1\)
* Áp dụng BĐT Bunhiacopxki:
\(a+b\le\sqrt{2\left(a^2+b^2\right)}=\sqrt{2}\)
Vậy \(a+b\le\sqrt{2}\)
Vậy \(1\le a+b\le\sqrt{2}\)
Ta có:
\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\)
Áp dụng BĐT Cosi ta có:
\(x\sqrt{1-x^2}\le\dfrac{x^2+1-x^2}{2}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{x^3}{x\sqrt{1-x^2}}\ge2x^3\)
Cmtt:
\(\dfrac{y^3}{y\sqrt{1-y^2}}\ge2y^3\)
\(\dfrac{z^3}{z\sqrt{1-z^2}}\ge2z^3\)
\(\Rightarrow\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}+\dfrac{y^3}{y\sqrt{1-y^2}}+\dfrac{z^3}{z\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\) (ĐPCM)
Gọi tổng trên là A
A = 1/2.2 + 1/3.3 +......+ 1/n.n
A < 1/1.2 + 1/2.3 +.......+ 1/(n-1)n
A < 1 - 1/2 + 1/2 - 1/3 +..........+ 1/n-1 - 1/n
A < 1 - 1/n < 1
=> A < 1 (đpcm)
Cái này không phải toán lớp 9 đâu bn ạ,lớp 6 có rồi !!!
1. \(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)
\(\Rightarrow\) Phương trình đã cho luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=\frac{m+1+1}{1}=m+2\\x_2=\frac{m+1-1}{1}=m\end{matrix}\right.\)
\(x_1^2+x_2=10\)
\(\Leftrightarrow\left(m+2\right)^2+m=10\)
\(\Leftrightarrow m^2+5m-6=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-6\end{matrix}\right.\)
2. \(\Delta'=\left(m+2\right)^2-\left(m^2+4m\right)=4>0\)
Phương trình luôn có 2 nghiệm pb: \(\left\{{}\begin{matrix}x_1=\frac{m+2-\sqrt{4}}{1}=m\\x_2=\frac{m+2+\sqrt{4}}{1}=m+4\end{matrix}\right.\)
\(x_1^2+x_2=10\)
\(\Leftrightarrow m^2+m+4=10\)
\(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=-3\\m=2\end{matrix}\right.\)
\(\left(m+1\right)^2\ge4m\)
\(\Leftrightarrow m^2+2m+1\ge4m\)
\(\Leftrightarrow m^2-2m+1\ge0\Leftrightarrow\left(m-1\right)^2\ge0\)
\(m^2+n^2+2\ge2\left(m+n\right)\)
\(\Leftrightarrow m^2-2m+1+n^2-2n+1\ge0\)
\(\Leftrightarrow\left(m-1\right)^2+\left(n-1\right)^2\ge0\)
làm câu đầu trước nha :
<=> m2+2m+1>=4m
<=>m2-2m+1>=0
<=>(m-1)2>=0 ( điều phải chứng minh