Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(E=\frac{9^{11}-9^{10}-9^9}{639}\)
\(E=\frac{9^8\left(9^3-9^2-9\right)}{639}\)
\(E=\frac{9^8.639}{639}\)
\(E=9^8\)
Chúc bạn học tốt ~
Đặt B = 911 - 910 -99
B = 98. ( 93-92-9)
B =98. 639
Thay B vào A, có:
\(A=\frac{9^8.639}{639}=9^8\)
=> A là số tự nhiên ( đ p c m)
\(a,7^6+7^5-7^4⋮55\)
\(7^4\left(7^2+7-1\right)⋮55\)
\(7^4\times55⋮55\left(dpcm\right)\)
\(8^{12}-2^{33}-2^{30}\)
\(=8^{12}-\left(2^3\right)^{11}-\left(2^3\right)^{10}\)
\(=8^{12}-8^{11}-8^{10}\)
\(=8^{10}\left(8^2-8-1\right)\)
\(=8^{10}\times55⋮55\left(dpcm\right)\)
\(\frac{9^{11}-9^{10}-9^9}{639}\)
\(=\frac{9^9\left(9^2-9-1\right)}{639}\)
\(=\frac{9^8\left(9^2-9-1\right)}{71}\)
\(=\frac{9^8.71}{71}\)
\(=9^8\)
\(\frac{\left(5^4-5^3\right)^3}{125^4}\)
\(\frac{\left[5^3.4\right]^3}{125^4}\)
\(\frac{5^9.4^3}{5^{12}}\)
\(\frac{4^3}{5^3}\)
ta có: 10\(^{2006}\)+53/9=\(\frac{10..053}{9}\)bạn thấy số có tổng chia hết cho 9 vì 1+0...0+5+3=9 nên \(\frac{10^{2006}+53}{9}\)chia hết cho 9 bạn thấy chỗ 10..053 là phải chú thích là có 2003 số 0 nhé
Cậu cho mình xin 1 like cảm ơn nhìu iu quá
Ta có: \(10^{2006}\equiv1\left(mod9\right)\)
\(53\equiv8\left(mod9\right)\)
\(\Rightarrow10^{2006}+53\equiv9\left(mod9\right)\)hay \(10^{2006}+53\equiv0\left(mod9\right)\)
hay\(10^{2006}+53⋮9\)
\(\frac{10^{2006}+53}{9}\)là số tự nhiên
Gọi A = 102000+71
A = 10..0 + 71
A= 100...071 ÷ 9
=>102000+71/9 là số tự nhiên
K MK NHA . CHÚC BẠN HỌC GIỎI
ĐÚNG 100% NHA
Chứng minh rằng: \(\left(\frac{9}{11}-0,81\right)^{2008}=\left(\frac{9}{11}\right)^{2008}\times\frac{1}{10^{4016}}\)
Có: \(\left(\frac{9}{11}-0,81\right)^{2008}=\left(\frac{9}{1100}\right)^{2008}\)
\(\left(\frac{9}{11}\right)^{2008}\times\frac{1}{10^{4016}}=\frac{9^{2008}}{11^{2008}\times\left(10^2\right)^{2008}}=\frac{9^{2008}}{11^{2008}\times100^{2008}}=\frac{9^{2008}}{\left(11\times100\right)^{2008}}=\frac{9^{2008}}{1100^{2008}}=\left(\frac{9}{1100}\right)^{2008}\)
Vì: \(\left(\frac{9}{1100}\right)^{2008}=\left(\frac{9}{1100}\right)^{2008}\Rightarrow\left(\frac{9}{11}-0,81\right)^{2008}=\left(\frac{9}{11}\right)^{2008}\times\frac{1}{10^{4016}}\)
\(E=\frac{9^{11}-9^{10}-9^9}{639}\)
\(E=\frac{9^9\left(9^2-9-1\right)}{639}\)
\(E=\frac{9^2.71}{639}\)
\(E=\frac{9^2.71}{9.71}\)
\(E=9\)
Vậy E là 1 số tự nhiên