K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

a > 2

=> a = 2 + k

b > 2

=> b = 2 + q

Ta có :

+) a + b = 2 + k + 2 + q = 4 + k + q + 0

+) a.b = ( 2 + k ) ( 2 + q ) = 4 + 2k + 2q + k.q 

Dễ thấy 4 = 4; 2k > k; 2q > q; k.q > 0

Do đó : a.b > a+b ( đpcm )

6 tháng 1 2019

Vì: a>2 => a=2+m
b>2 => b=2+n (m, n thuộc N*)
=> a+b= (2+m) +(2+n)
a.b= (2+m). (2+n)
    = 2(2+n)+ m(2+n)
    = 4+ 2n+ 2m+ mn
    = 4+ m+ m+ n+ n+ mn
    = (4+ m+ n) +(m +n +mn)
    = (2+ m) +(2+ n) + (m+ n+ mn) > (2+ m)+ (2+n)
=> a.b > a+b .dpcm

14 tháng 12 2016

Bài 2:

Ta chứng minh \(\left|a+b\right|\le\left|a\right|+\left|b\right|\) (*) :

Bình phương 2 vế của (*) ta có:

\(\left(\left|a+b\right|\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)

\(\Leftrightarrow a^2+b^2+2ab\le a^2+b^2+2\left|ab\right|\)

\(\Leftrightarrow ab\le\left|ab\right|\) (luôn đúng)

Áp dụng (*) vào bài toán ta có:

\(\left|a-c\right|\le\left|a-b+b-c\right|=\left|a-c\right|\) (luôn đúng)

6 tháng 2 2017

cảm ơn nhiều nha leuleuhiha

18 tháng 8 2015

a) a<b

=>ac<bc  (vi c>0)

=>ac+ab<bc+ab

=>a(b+c)<b(a+c)

=>a/b<a+c/b+c

b) lam nguoc lai cau a

9 tháng 4 2020

Ta có: a < b

=> a - b < 0

=>  a - b - a < 0 - a

=> - b < - a.

Vậy.....