K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2016

\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.....+\left(\frac{1}{2}\right)^{2014}+\left(\frac{1}{2}\right)^{2015}\)

\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\)

Ta có: \(2B=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2013}}+\frac{1}{2^{2014}}\)

=>\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2013}}+\frac{1}{2^{2014}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\right)\)

=>\(B=1-\frac{1}{2^{2015}}<1\left(đpcm\right)\)

16 tháng 5 2016

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2003}}+\frac{1}{2^{2004}}\)

\(B=2B-B=1-\frac{1}{2005}<1\)

3 tháng 3 2018

\(A=\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}+\dfrac{1}{2017^3}\)

\(A=\dfrac{1}{8}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}+\dfrac{1}{2017^3}>\dfrac{1}{8}>\dfrac{1}{12}\left(1\right)\)

Xét thừa số tổng quát: \(\dfrac{1}{n^3}< \dfrac{1}{n^3-n}=\dfrac{1}{n\left(n^2-1\right)}=\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)

Hay:

\(A< \dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}+...+\dfrac{1}{2016.2017.2018}\)

\(A< \dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+..+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}+...+\dfrac{1}{2016.2017}-\dfrac{1}{2017.2018}\right)\)

\(A< \dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2017.2018}\right)=\dfrac{1}{4}-\dfrac{1}{2.2017.2018}< \dfrac{1}{4}< \dfrac{505}{5028}\left(2\right)\)

Từ (1) và (2) ta có đpcm

3 tháng 3 2018

Mình cảm ơn bạn nhiều lắm Mong bạn có thể giúp đỡ mình trong những cơ hội nhé thank you😊😊😊😊😊

21 tháng 7 2019

Ta có : 1/2 = 0,5

            2/3 = 0,666...

=> 1/2 + 2/3 + ... + 99/100 = 0,5 + 0,666...+3/4 + ... + 99/100

                                           = 1,1,6666... + 3/4 + ... +99/100 > 1

=> 1/2 + 2/3 + ... + 99/100 > 1

 \(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\le1\)

\(=\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)

 \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\le1\)

\(\Rightarrow1-\frac{1}{100}\le1\)

1 tháng 8 2017
 

Ta có:

112 =1;122 <11.2 ;132 <12.3 ;...;1502 <149.50 

=>A=112 +122 +132 +...+1502 <1+(11.2 +12.3 +...+149.50 )

                                                             =1+(112 +12 13 +...+149 150 )

                                                             =1+(1150 )

                                                             =1+1150 

                                                             =2150 <2

=> A < 2

14 tháng 3 2017

kho qua

6 tháng 1 2016

Bạn bảo bọn mình cm thế nào? Bạn phải đưa ra đẳng thức hoặc bất đẳng thức chứ!