K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2021

\(A=\frac{1}{2}-\frac{2}{2^2}+\frac{3}{2^3}-\frac{4}{2^4}+...+\frac{99}{2^{99}}-\frac{100}{2^{100}}\)

\(\Rightarrow2A=1-\frac{2}{2}+\frac{3}{2^2}-\frac{4}{2^3}+\frac{5}{2^4}-\frac{6}{2^5}+\frac{7}{2^6}-...+\frac{99}{2^{98}}-\frac{100}{2^{99}}\)

Cộng vế theo vế ta được: \(3A=1+\left(\frac{1}{2}-\frac{2}{2}\right)+\left(-\frac{2}{2^2}+\frac{3}{2^2}\right)+\left(\frac{3}{2^3}-\frac{4}{2^3}\right)+\left(-\frac{4}{2^4}+\frac{5}{2^4}\right)+...+\left(\frac{99}{2^{99}}-\frac{100}{2^{99}}\right)-\frac{100}{2^{100}}\)

\(\Rightarrow3A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}}-\frac{100}{2^{100}}\)

Xét \(B=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}+\frac{1}{2^{98}}-\frac{1}{2^{99}}\)

\(\Rightarrow2B=2-1+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{97}}-\frac{1}{2^{98}}\)

Cộng vế theo vế ta được: \(3B=2+\left(1-1\right)+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{2^2}-\frac{1}{2^2}\right)+...+\left(\frac{1}{2^{98}}-\frac{1}{2^{98}}\right)-\frac{1}{2^{99}}\)

\(\Rightarrow3B=2-\frac{1}{2^{99}}< 2\Rightarrow B< \frac{2}{3}\)

Mà \(3A=B-\frac{100}{2^{100}}\Rightarrow3A< B< \frac{2}{3}\Rightarrow A< \frac{2}{9}\)

20 tháng 7 2021

mình ko biết câu này nha

20 tháng 7 2021

A=1/2-2/2+3-4/2+....+99/2 -100/2

8 tháng 4 2016

Đơn giản!Cô Huệ gợi ý làm được rồi

11 tháng 5 2016

\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

=>\(\frac{1}{3}A=\frac{1}{3^2}-\frac{2}{3^3}+\frac{3}{3^4}-\frac{4}{3^5}+....+\frac{99}{3^{100}}-\frac{100}{3^{101}}\)

=>\(\frac{1}{3}A+A=\frac{4}{3}A=\frac{1}{3}-\left(\frac{2}{3^2}-\frac{1}{3^2}\right)+\left(\frac{3}{3^3}-\frac{2}{3^3}\right)+\left(\frac{4}{3^4}-\frac{3}{3^4}\right)+....+\left(\frac{99}{3^{99}}-\frac{98}{3^{99}}\right)+\left(\frac{100}{3^{100}}-\frac{99}{3^{100}}\right)-\frac{100}{3^{101}}\)

=>\(\frac{4}{3}A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+.....+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)

Đặt \(S=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)

=>\(\frac{1}{3}S=\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3^5}+....+\frac{1}{3^{100}}-\frac{1}{3^{101}}\)

=>\(\frac{1}{3}S+S=\frac{4}{3}S=\frac{1}{3}-\frac{1}{3^{101}}\Rightarrow S=\left(\frac{1}{3}-\frac{1}{3^{101}}\right):\frac{4}{3}=\left(\frac{1}{3}-\frac{1}{3^{101}}\right).\frac{3}{4}=\frac{1}{3}.\frac{3}{4}-\frac{1}{3^{101}}.\frac{3}{4}\)=>\(S=\frac{1}{4}-\frac{1}{3^{100}.4}\)

\(\frac{4}{3}A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+....+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)

=>\(\frac{4}{3}A=\frac{1}{4}-\frac{1}{3^{100}.4}=\frac{1}{4}-\frac{1}{3^{100}}.\frac{1}{4}=\frac{1}{4}.\left(1-\frac{1}{3^{100}}\right)\)

=>\(A=\frac{1}{4}\left(1-\frac{1}{3^{100}}\right):\frac{4}{3}=\frac{1}{4}\left(1-\frac{1}{3^{100}}\right).\frac{3}{4}=\frac{1}{4}.\frac{3}{4}.\left(1-\frac{1}{3^{100}}\right)=\frac{3}{16}.\left(1-\frac{1}{3^{100}}\right)\)

\(1-\frac{1}{3^{100}}<1\Rightarrow A<\frac{3}{16}\)