Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n thuộc N
B=x^2 +2x +1 =(x+1)^2
\(A=x^{4n+2}+2.x^{2n+1}+1=\left(x^{2n+1}\right)^2+2.\left(x^{2n+1}\right)+1=\left(x^{2n+1}+1\right)^2\)
\(\dfrac{A}{B}=\left(\dfrac{x^{2n+1}+1}{x+1}\right)^2\)
với n =0 đúng
n >0 =>2n+1 >=3
=> x^(2n+1) =(x+1).g(x) => dpcm
Ta có :
\(x^{4n+2}+2x^{2n+1}+1=\left(x^{2n+1}\right)^2+2x^{2n+1}+1==\left(x^{2n+1}+1\right)^2\)
Vì \(x^{2n+1}+1⋮x+1\forall x;n\in Z\) nên \(\left(x^{2n+1}+1\right)^2⋮\left(x+1\right)^2=\forall x;n\in Z\)
Hay \(x^{4n+2}+2x^{2n+1}+1⋮x^2+2x+1\)
Đặt \(A=x^{20}+x^{10}+1\)
\(x^{50}+x^{10}+1\)
\(=x^{50}-x^{20}+A\)
\(=x^{20}\left(x^{30}-1\right)+A\)
\(=x^{20}\left(x^{10}-1\right)A+A\)
\(=\left(x^{30}-x^{20}+1\right)A\)
mà \(\left(x^{30}-x^{20}+1\right)A⋮A\)
\(\Rightarrow\left(x^{50}+x^{10}+1\right)⋮\left(x^{20}+x^{10}+1\right)\)