Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)
a)thay \(x=2\sqrt{2}\)vào a ra có
\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)
\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)
Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)
:v Làm bài 31 thôi nhá , còn lại all tự làm -..-
Gọi x (cm) , y (cm) là độ dài hai cạnh góc vuông của tam giác vuông (x > 2, y > 4).
Diện tích tam giác ban đầu là \(\frac{1}{2}xy\left(cm^2\right)\)
+ Tăng mỗi cạnh lên 3cm thì tam giác vuông mới có độ dài 2 cạnh là x + 3(cm) và y + 3 (cm)
Diện tích tam giác mới là : \(\frac{1}{2}\left(x+3\right)\left(y+3\right)\left(cm^2\right)\)
Diện tích tăng thêm 36 cm2 nên ta có p/trình :
\(\frac{1}{2}\left(x+3\right)\left(y+3\right)=\frac{1}{2}xy+36\)
\(\Leftrightarrow\left(x+3\right)\left(y+3\right)=xy+72\)
\(\Leftrightarrow xy+3x+3y+9=xy+72\)
\(\Leftrightarrow3x+3y=63\)
\(\Leftrightarrow x+y=21\)
+ Giảm một cạnh 2cm và giảm cạnh kia 4cm thì tam giác vuông mới có 2 cạnh là : x – 2 (cm) và y – 4 (cm).
Diện tích tam giác mới là : \(\frac{1}{2}\left(x-2\right)\left(y-4\right)\left(cm^2\right)\)
Diện tích giảm đi 26cm2 nên ta có phương trình :
\(\frac{1}{2}\left(x-2\right)\left(y-4\right)=\frac{1}{2}xy-26\)
\(\Leftrightarrow\left(x-2\right)\left(y-4\right)=xy-52\)
\(\Leftrightarrow xy-4x-2y+8=xy-52\)
\(\Leftrightarrow4x+2y=60\)
\(\Leftrightarrow2x+y=30\)
Ta có hệ phương trình : \(\hept{\begin{cases}x+y=21\\2x+y=30\end{cases}}\)
Lấy phương trình thứ hai trừ phương trình thứ nhất ta được :
\(\hept{\begin{cases}\left(2x+y\right)-\left(x+y\right)=30-21\\x+y=21\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+y-\left(x+y\right)=9\\x+y=21\end{cases}\Leftrightarrow\hept{\begin{cases}x=9\\y=12\end{cases}}}\)
Vậy tam giác có hai cạnh lần lượt là 9cm và 12cm
Hình tự vẽ nha
a) Vì A,B,D thuộc ( O; AD/2 )
\(\Rightarrow\widehat{ABD}=90^0\)
Vì \(EF\perp AD\Rightarrow\widehat{EFA}=90^0\)
Xét tứ giác ABEF có góc \(\widehat{ABE}=\widehat{AFE}=90^0\)
mà 2 góc này ở vị trí đối nhau trong tứ giác ABEF
\(\Rightarrow ABEF\)nội tiếp ( dhnb )
b) Vì A,C,D thuộc ( O; AD/2 )
\(\Rightarrow\widehat{ECD}=90^0\)
Xét tứ giác EFDC có: \(\widehat{ECD}=\widehat{EFD}=90^0\)
Mà 2 góc này ở vị trí đối nhau trong tứ giác EFDC
\(\Rightarrow EFDC\)nội tiếp
\(\Rightarrow\widehat{ECF}=\widehat{EDF}\)( cùng chắn cung EF )
Lại có: \(\widehat{BCA}=\widehat{BDA}\left(=\frac{1}{2}sđ\widebat{AB}\right)\)
\(\Rightarrow\widehat{BCA}=\widehat{ACF}\)
=> AC là phân giác góc BCF
\(P=\left(1+2a\right)\left(1+2bc\right)\le\left(1+2a\right)\left(1+b^2+c^2\right)=\left(1+2a\right)\left(2-a^2\right)\)
\(=\frac{3}{2}\left(\frac{2}{3}+\frac{4}{3}a\right)\left(2-a^2\right)\le\frac{3}{8}\left(\frac{8}{3}+\frac{4}{3}a-a^2\right)^2=\frac{3}{8}\left[\frac{28}{9}-\left(a-\frac{2}{3}\right)^2\right]^2\)
\(\le\frac{3}{8}.\left(\frac{28}{9}\right)^2=\frac{98}{27}\)
Dấu \(=\)khi \(\hept{\begin{cases}b=c\\\frac{2}{3}+\frac{4}{3}a=2-a^2,a-\frac{2}{3}=0\\a^2+b^2+c^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{2}{3}\\b=c=\frac{\sqrt{\frac{5}{2}}}{3}\end{cases}}\).
Vậy \(maxP=\frac{98}{27}\).
Ta co : \(P=2a+2bc+2abc+1\)
Ap dung bdt Co-si : \(P\le a^2+b^2+c^2+2abc+2=2abc+3\)
Tiep tuc ap dung Co-si : \(1=a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}< =>\sqrt[3]{a^2b^2c^2}\le\frac{1}{3}\)
\(< =>a^2b^2c^2\le\frac{1}{27}< =>abc\le\frac{1}{\sqrt{27}}\)
Khi do : \(2abc+3\le2.\frac{1}{\sqrt{27}}+3=\frac{2}{\sqrt{27}}+3\)
Suy ra \(P\le a^2+b^2+c^2+2abc+2\le\frac{2}{\sqrt{27}}+3\)
Dau "=" xay ra khi va chi khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Vay Max P = \(\frac{2}{\sqrt{27}}+3\)khi a = b = c = \(\frac{1}{\sqrt{3}}\)
p/s : khong biet dau = co dung k nua , minh lam bay do
a) Giả sử \(\sqrt{7}\)là số hữu tỉ.
\(\Rightarrow\sqrt{7}=\frac{a}{b}\left(a,b\inℤ;\left(a;b\right)=1\right)\)
\(\Rightarrow a=\sqrt{7}b\)
\(\Rightarrow a^2=7b^2\)
\(\Rightarrow a^2⋮7\)
\(\Rightarrow a⋮7\)(do 7 là số nguyên tố)
\(\Rightarrow a=7k\left(k\inℤ\right)\)
\(\Rightarrow7b^2=49k^2\)
\(\Rightarrow b^2=7k^2\)
\(\Rightarrow b^2⋮7\)
\(\Rightarrow b⋮7\)(do 7 là số nguyên tố)
\(\Rightarrow a;b\in B\left(7\right)\)
\(\Rightarrow\)Mẫu thuẫn với (a;b)=1
\(\Rightarrow\)Điều giả sử là sai
\(\Rightarrow\sqrt{7}\)là số vô tỉ