K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2021

a) P=2+22+23+24+...+260 \(⋮\) 21 và 15

\(\Rightarrow\)P = 22+23+24+25+...+261  

\(\Rightarrow\) (2P - P) = 261 - 2

\(\Rightarrow\) P = 261 - 2 = 2.(260 - 1)

Để P \(⋮\) 21 và 15 thì (260 - 1) \(⋮\)21 và 15

tức là (260 - 1) \(⋮\)3; 5; 7

*Ta có 260 - 1 = (24)15 = 1615 - 1

          = (16 - 1).(1+16+162+163+...+1614)

          = 15.(1+16+162+163+...+1614\(⋮\) 15  

Vậy  P \(⋮\) 15  (1)

    * Ta có 260 - 1 = (26)10 - 1 = 6410 - 1

                = (64 - 1).(1+64+642+643+...+64)

                = 63 \(⋮\) (1+64+642+643+...+64)

                = 21.3.(1+64+642+643+...+64\(⋮\) 21

         P \(⋮\)21   (2) 

    Từ (1) và (2) \(\Rightarrow\)  P \(⋮\)15 và 21

  

 
16 tháng 7 2016

không trả lời

14 tháng 7 2016

Suốt ngày nôn ọe . Nếu bn ko bít làm thì đừng trả lời!!! bucqua

30 tháng 8 2020

a, 2n+1 chia hết cho 21=>21 thuộc Ư(2n+1)

=>2n+1 thuộc {1,3,7,21}

2n+113721
n01310

Vậy n thuộc{0,1,3,10}

30 tháng 8 2020

b, n+15 chia hết cho n-3 => n-3+18 chia hết n-3

=>18 chia hết n-3 =>n-3 thuộc Ư(18)

=>18 thuộc B(n-3)=>n-3 thuộc {1,2,3,6,9,18}

 Ta có bảng giá trị sau:

n-312369

18

n45691221

Vậy...

14 tháng 7 2016

\(1+5+5^2+5^3+...+5^{101}\)

\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{100}+5^{101}\right)\)

\(=1+5+5^2\left(1+5\right)+5^4\left(1+5\right)+...+5^{100}\left(1+5\right)\)

\(=6+5^2.6+5^4.6+...+5^{100}.6\)

\(\Rightarrow6+6\left(5^2+5^4+5^6+...5^{100}\right)⋮6\)

\(\Rightarrow1+5+5^2+5^3+...+5^{101}⋮6\)

14 tháng 7 2016

câu b với bài 2 nữa nhé rùi mình tick cho

 

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!