Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b;
bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.
.......................................................................3......n=3k và 3k + 1 và 3k+2
c;
bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9
d;tương tự b
e;g;tương tự a
a) 99^20 - 11^9
Ta có : 99^20 = ....1
11^9 = ....1
Mà : ....1 - .....1 = 0 => Tận cùng của 99^20 - 11^9 là 0 => \(⋮\)2
b) 99^8 - 66^2
Ta có : 99^8 = ...1 ; 66^2 = ....6
Mà : ....1 - ....6 = ....5 => Tận cùng của 99^8 - 66^2 là 5 => \(⋮\)5
c) 2011^10 - 1
Ta có : 2011^10 = ....1
Mà : ....1 - 1 = ....0 => Tận cùng của 2011^10 - 1 là 0 => \(⋮\)10
99^20 le;11^9 le nen hieu chia het cho 2
99^8=...1;66^2=6 nen hieu =...5 chia het cho 5
2011^10-1=..1-1=..0 chia het cho 10
Bai nay de ma
c,\(10^{2010}+8\)
\(=100...0+8\)
\(=100...8\)(tổng các chữ số =9)
\(\Rightarrow10^{2010}+8⋮9\)
1a.
Số nhỏ nhất: 5, số lớn nhất 1000
Vậy có: (1000 - 5): 5 + 1 = 200 (số)
a) \(A=1+2+3^2+....+3^{11}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(=\left(1+3\right)+3^2\left(1+3\right)+....+3^{10}\left(1+3\right)\)
\(=\left(1+3\right)\left(1+3^2+...+3^{10}\right)\)
\(=4\left(1+3^2+...+3^{10}\right)\)\(⋮\)\(4\)
b) \(B=16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.33\)\(⋮\)\(33\)
c) \(C=10^{28}+8=1000...008\)(27 chữ số 0)
Nhận thấy: tổng các chữ số của C chia hết cho 9 => C chia hết cho 9
3 chữ số tận cùng của C chia hết cho 8 => C chia hết cho 8
mà (8;9) = 1 => C chia hết cho 72
d) \(D=8^8+2^{20}=2^{24}+2^{20}=2^{20}\left(2^4+1\right)=2^{20}.17\)\(⋮\)\(17\)
Bài 78 :
Số có tận cùng là 1 khi nâng lên lũy thừa vẫn có tận cùng là 1
Ta có : A có 10 số hạng
Vậy A = (...1) + (...1) + .... + (..1) = (...0)
A có chữ số tận cùng là 0 nên A chia hết cho 5
78/ \(A=11^9+11^8+11^7+...+11+1\)
\(\Rightarrow2A=11^{10}+11^9+11^8+11^7+...+11\)
\(\Rightarrow2A\text{-}A=\left(11^{10}+11^9+11^8+11^7+...+11\right)\text{-}\left(+11^9+11^8+11^7+...+11+1\right)\)
\(A=11^{10}\text{-}1\)
\(A=\left(...1\right)\text{-}1\Rightarrow A=\left(...0\right)\)tận cùng là 0 chia hết cho 5.
Bài 1:
a,Ta có:\(\dfrac{n+8}{n}=1+\dfrac{8}{n}\)
Để \(n+8⋮n\) thì \(8⋮n\)
\(\Rightarrow n\in\left\{1;2;4;8\right\}\)
Vậy.....
b.c tương tự
Bài 2:
a.\(942^{60}-351^5=\left(.......6\right)-\left(..........1\right)=\left(.......5\right)⋮5\)
Do đó:\(942^{60}-351^{37}⋮5\left(dpcm\right)\)
b,\(99^5-98^4+97^3-96^2\\ =\left(.....9\right)-\left(....6\right)+\left(..........3\right)-\left(..........6\right)=\left(...........0\right)⋮10\)
Do đó:\(99^5-98^4+97^3-96^2⋮2;5\left(dpcm\right)\)