Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=abc+bca+cab= (1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b) = 1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn
Vậy M không phải là số chính phương
S=abc+bca+cab
=100a+10b+c+100b+10c+a+100c+10a+b
=111a+111b+111c
=111(a+b+c)
giả sử S là số chính phương
=>a+b+c=111.k2 (k khác 0)
mà a+b+c<28=>S không phải là số chính phương
vậy không có S
S=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương S
\(A=\overline{abc}+\overline{bca}+\overline{cab}\)
\(A=100a+10b+c+100b+10c+a+100c+10a+b\)
\(A=111a+111b+111c\)
\(A=111\left(a+b+c\right)\)
Với A là số chính phương chia hết cho 111 thì A chia hết cho 12321
nên a+b+c phải chia hết cho 111 và a+b+c khác 0 thì không có số a,b,c thỏa mãn
vậy A không là số chính phương
S=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương S
S = abc + bca + cab
=a.100+b.10+c+b.100+c.10+a+c.100+a.10+b
=a.(100+10+1)+b.(100+10+1)+c.(100+10+1)
=a.111+b.111+b.111
=(a+b+c).111
=> (a+b+c) thuộc {1;2;3;4;5;6;7;8;9}
=> S thuộc {111;222;333;444;555;666;777;888;999}
nhé
S = abc + bca + cab
=a.100+b.10+c+b.100+c.10+a+c.100+a.10+b
=a.(100+10+1)+b.(100+10+1)+c.(100+10+1)
=a.111+b.111+b.111
=(a+b+c).111
=> (a+b+c) thuộc {1;2;3;4;5;6;7;8;9}
=> S thuộc {111;222;333;444;555;666;777;888;999}
nhé Hoàng Thu Hà
S=abc+bca+cab
=(100a+10b+c)+(100b+10c+a)+(100c+10a+b)
=(100a+10a+a)+(100b+10b+b)+(100c+10c+c)
=111a+111b+111c=111.(a+b+c)=3.37.(a+b+c)
Giả sử S là SCP mà 37 là 1 số nguyên tố=>S chia hết cho 37.Nhưng a+b+c ko chia hết cho 37
Vậy S ko là 1 SCP(đpcm)
hoặc cách này cũng đc(cô mk chỉ):
Giả sử S là SCP thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn=>3(a+b+c) chia hết cho 37
do đó a+b+c chia hết cho 37(*)
Nhưng 1<a+b+c<27
=>(*) ko thể xảy ra
Hay S ko là 1 SCP
S=111(a+b+c) =37*3*(a+b+c)
Vì 37 và 3 là các số nguyên tố nên để S là số chính phuong <=>(a+b+c) chia het cho 111
mà 0<a,b,c<9 => 0<a+b+c<27
=> S ko phải là số chính phương
a) A = abc + bca + cab
=> A = ( 100a + 10b + c ) + ( 100b + 10c + a)+ ( 100c + 10a + b)
=> A = 100a + 10b + c + 100b + 10c + a + 100c + 10a +b
=> A = 111a + 111b + 111c
=> A = 111( a+b+c)
vì 0< a+b+c ≤ 27 nên a + b + c không chia hết cho 37
mặt khác ( 3 ; 37)=1 nên 3( a+b+c) không chia hết cho 37
=> A không phải là số chính phương
b)
ababab=ab.10101
để ab là sô chính phương thì ab = 10101
mà ab là số có 2 chứ số
⇒ ababab không phải là số chính phương
no la b 3 ban oi