Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 85 + 211 = (23)5 + 211 = 215 + 211 = 211 (24 + 1) = 211 . 17
=> đpcm
b, 692 - 69 . 5 = 69 (69 - 5) = 69 . 64 = 69 . 32 . 2
=> đpcm
c, 87 - 218 luôn chia hết cho 2 (1)
87 - 218 = 221 - 218 = 218 (23 - 1) = 218 . 7
=> 218 . 7 chia hết cho 7 (2)
có 1 và 2, 2 và 7 nguyên tố cùng nhau
=> đpcm
chúc may mắn
a) 85+211 = ( 23)5+ 211= 215 + 211 = 211 ( 24+1) = 211(16+1) =( 211. 17 ) chia hết cho 17 => ........ ( kết luận )
b) 692-69.5 = 69 ( 69-5) = 69. 64 = (69.2.32) chia hết cho 32 => ....
c) 87-218 = (23)7 - 218 = 221-218 = 218( 23-1) = 217.2.7 = (217 .14) chia hết cho 14 => ...
a)
\(8^5=2^{15}\)
=> \(2^{11}+2^{15}\)
= \(2^{11}.1+2^{11}.2^4\)
= \(2^{11}.\left(1+2^4\right)\)
= \(2^{11}.17⋮17\)
Vậy ta có điều phải chứng minh !!!
b)
\(69^2-69.5\)
= \(69.69-69.5\)
= \(69.\left(69-5\right)\)
= \(69.64⋮32\)( Vì 64 \(⋮\)32 )
c)
\(8^7=2^{21}\)
=> \(2^{21}-2^{18}\)
= \(2^{17}.2^4-2^{17}.2\)
= \(2^{17}.\left(2^4-2\right)\)
= \(2^{17}.14⋮14\)
Vậy ta có điều phải chứng minh !!!
Ủng hộ mik nhá ^_^"
a)\(\left(2^3\right)^5+2^{11}=2^{15}+2^{11}=2^{11}\left(2^4+1\right)\)
\(=2^{11}.17\)chia hết cho 17
b)\(=69\left(69-5\right)=69.64\)mà 64chia hết cho32 nen 69.64 chia hết cho 32
c)\(=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}\)
\(=2^{17}\left(2^5-2\right)=2^{17}.28\)mà 28chia hết cho 14 nên \(2^{17}.28\)chia hết cho 14
+) Có : \(8^5+2^{11}=\left(2^3\right)^5+2^{11}=2^{15}+2^{11}=2^{11}\left(2^4+1\right)=2^{11}.17\)
Rõ ràng kết quả trên chia hết cho 17
+ ) Áp dụng hằng đẳng thức :
\(a^n+b^n=\left(a+b\right)\left(a^{n-1}-a^{n-2}b+a^{n-3}b^2-...-ab^{n-2}+b^{n-1}\right)\)với mọi n lẻ
Có : \(19^{19}+69^{19}=\left(19+69\right)\left(19^{18}-19^{17}.69+...+69^{18}\right)=88\left(19^{18}-19^{17}.69+...+69^{18}\right)\) chia hết cho 44
a)
85=215
=> 211+215
= 211.1+211.24
= 211.(1+24)
= 211.17⋮17
Vậy ta có điều phải chứng minh !!!
b)
692−69.5
= 69.69−69.5
= 69.(69−5)
= 69.64⋮32( Vì 64 ⋮32 )
c)
87=221
=> 221−218
= 217.24−217.2
= 217.(24−2)
= 217.14⋮14