K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:
- Ta có x^2+x+1=0
=> x^2+x=-1
=> x=x^2+1
mà x^2 x
=> x^2+1 x
=> Không tìm được giá trị của x
=> A không có giá trị

2.

Từ n2+n+1=0⇒n≠1⇒(n−1)(n2+a+1)=0⇒a3−1=0⇒a3=1n2+n+1=0⇒n≠1⇒(n−1)(n2+a+1)=0⇒a3−1=0⇒a3=1
Xét 3 trường hợp:
_ VỚi n = 3k thì A=(n3)k+1(n3)k=1+1=2(n3=1)A=(n3)k+1(n3)k=1+1=2(n3=1)
_ Với n = 3k + 1 thì A=(n3)k.n+1(n3)k.n=n+1n=n2+1n=−nn=−1A=(n3)k.n+1(n3)k.n=n+1n=n2+1n=−nn=−1
_Với n = 3k+2 thì A=(n3)k.n2+1(n3)k.n2=n2+1n2A=(n3)k.n2+1(n3)k.n2=n2+1n2
Ta có (n+1n)2=n2+1n2+2.n.1n=n2+1n2+2=1(n+1n)2=n2+1n2+2.n.1n=n2+1n2+2=1
 A = 1 -2 = -1
Mình không biết đúng không nha 

2 tháng 6 2016

ta có:

1/1.2+1/3.4+1/5.6+...+1/49.50

=>1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50

=>(1+1/3+1/5+1/7+...+1/49)-(1/2+1/4+1/6+...+1/50)

=>(1+1/2+1/3+...+1/49+1/50)-(1/2+1/4+1/6+...+1/50).2

=>(1+1/2+1/3+...+1/49+1/50) -( 1+1/2+1/3+...+1/25)

=>1/26+1/27+1/28+...+1/50=1/26+1/27+1/28+...+1/50

hay 1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50

24 tháng 6 2019

A= \(\frac{1}{2}\) + \(\frac{1}{2^2}\) + \(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\)

\(\Rightarrow\) 2A = 1 + \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)

\(\Rightarrow\) 2A - A = ( \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\) ) -

( \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\))

\(\Rightarrow\) A = 1 - \(\frac{1}{2^{100}}\) < 1

Vậy: A < 1
\(\frac{1}{2}\)

24 tháng 6 2019

B= \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

= 2. \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

= 2. ( \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\) )

= 2. \(\left(\frac{1}{1}-\frac{1}{100}\right)\) = \(\frac{99}{50}\)

\(\Rightarrow\) B = \(\frac{99}{50}\) < \(\frac{100}{50}\) = 2

Vậy: B < 2

21 tháng 4 2016

Ta có:

\(M=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(M=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}\right)\)

\(M=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}=N\)

\(\Rightarrow\frac{M}{N}=1\)

5 tháng 2 2020

Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

Khi đó : \(\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\right):\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}\right)\)

\(=\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\right):\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\right)=1\) (đpcm)

5 tháng 2 2020

Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

Khi đó \(\frac{\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}}{\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}}=\frac{\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}}{\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}}=1\left(\text{đpcm}\right)\)

23 tháng 4 2017

a) 1/1.2 + 1/2.3 + 1/3.4 + ....... + 1/99.100

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ..... + 1/99 - 1/100

= 1 - 1/100

= 99/100 < 1 nên 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100 < 1 (ĐPCM)

23 tháng 4 2017

a)1-1/2+1/2-1/3+1/3-1/4+......+1/99-1/100

1-1/100=99/100<1

cho mk nha ^^

10 tháng 7 2016

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

=> đpcm

Ủng hộ mk nha ^_-

10 tháng 7 2016

đpcm là j z ạ

18 tháng 7 2015

1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50

=1/1-1/2+1/3-1/4+...+1/49-1/50

=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)

=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)

=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25

=1/26+1/27+...+1/50 (đpcm)

7 tháng 10 2016

bn ơi bn có thê

rhuowngs dẫn mình 

làm ko vì

mai mình ucngx

có bài này