K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2019

(5n - 2)2 - (2n - 5)2

= 25n2 - 20n + 4 - 4n2 + 20n - 25

= 21n2 - 21

= 21(n2 - 1) \(⋮\) 21 (đpcm)

Mình nhanh nhất, chọn mình nha

5 tháng 8 2019

a) (5n - 2)2 - (2n - 5)2

= (5n - 2 - 2n + 5) (5n - 2 + 2n - 5)

= (3n + 3) (7n - 7)

= 21n2 - 21n + 21n - 21

= 21n2 - 21 \(⋮\) 21

Vậy: 21n2 - 21 \(⋮\) 21 vs n \(\in\) Z

b) Gọi 2 số lẻ liên tiếp là 2x + 1 ; 2x + 3

Hiệu bình phương của 2 số lẻ liên tiếp là:

(2x + 1)2 - (2x + 3)2

= (2x + 1 - 2x - 3) (2x + 1 +2x + 3)

= -2.(4x + 4)

= -2.4(x + 1)

= -8(x + 1) \(⋮\) 8

Vậy: hiệu bình phương của 2 số lẻ liên tiếp \(⋮\) 8

5 tháng 8 2019

\(\left(2n+3\right)^2-\left(2n+1\right)^2=4n^2+12n+9-4n^2-4n-1=8n+8=8\left(n+1\right)⋮8\left(\text{đ}pcm\right)\)\(\left(5n-2\right)^2-\left(2n-5\right)^2=25n^2-20n+4-4n^2+20n-25=21n^2-21=21\left(n^2-1\right)⋮21\left(\text{đ}pcm\right)\)

28 tháng 7 2018

\(4x^3-36x=0\)

\(x.\left[\left(2x\right)^2-6^2\right]=0\)

\(x.\left(2x-6\right)\left(2x+6\right)=0\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\2x-6=0\end{cases}}\)hoặc \(2x+6=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)hoặc \(x=-3\)

KL:...............................................

tích mình với

ai tích mình

mình tích lại

thanks

3 tháng 12 2018

bài 1:

\(\frac{2n^2+5n-1}{2n-1}=\frac{2n^2-n+6n-3+2}{2n-1}=\frac{n\left(2n-1\right)+3\left(2n-1\right)+2}{2n-1}=n+3+\frac{2}{2n-1}\)

Để \(2n^2+5n-1⋮2n-1\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

<=>2n thuộc {2;0;3;-1}

<=>n thuộc {1;0;3/2;-1/2}

Mà n thuộc Z

=> n thuộc {1;0}

bài 2 sửa đề x5-5x3+4x

Ta có: \(x^5-5x^3+4x=x\left(x^4-5x^2+4\right)=x\left(x^4-x^2-4x^2+4\right)=x\left[x^2\left(x^2-1\right)-4\left(x^2-1\right)\right]\)

\(=x\left(x^2-4\right)\left(x^2-1\right)=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

Vì x(x-1)(x+1)(x+2)(x-2) là tích 5 số nguyên liên tiếp nên tích này chia hết cho 3,5,8

Mà (3,5,8)=1

=>\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-2\right)⋮3.5.8=120\)

=>đpcm

16 tháng 7 2015

     n^2.(n+1) + 2n.(n+1)

=(n+1). (n^2 + 2n)

= (n+1).n.(n+2) chia hết cho 6 (tích 3 số tự nhiên liên tiếp chia hết cho 6)

16 tháng 7 2015

n2.(n + 1) + 2n.(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)

Vì n(n + )(n + 2) là tích của 3 số nguyên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3.

=> Tích n(n + 1)(n + 2) chia hết cho 2 và 3.

Mà (2,3) = 1

=> n(n + 1)(n + 2) chia hết cho 6

=> n2.(n+1)+2n.(n+1) chia hết cho 6

Bài 1: 

a: \(\Leftrightarrow4x\left(x^2-9\right)=0\)

=>x(x-3)(x+3)=0

hay \(x\in\left\{0;3;-3\right\}\)

b: \(\Leftrightarrow\left(3x-5-x-1\right)\left(3x-5+x+1\right)=0\)

=>(2x-6)(4x-4)=0

=>x=1 hoặc x=3

c: \(\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)

=>(-2x-4)(12x-4)=0

=>x=1/3 hoặc x=-2

5 tháng 8 2019

\(A=\left(n^2+3n+2\right)\left(2n-1\right)-2\left(n^3-2n-1\right)\)

\(A=2n^3+6n^2+4n-n^2-3n-2-2n^3+4n+2\)

\(A=5n^2+5n\)

\(A=5n\left(n+1\right)\)

\(\text{Vì 5⋮5 nên 5n(n+1)⋮5}\)(1)

\(\text{Vì n;n+1 là hai số tự nhiên liên tiếp nên n(n+1)⋮2}\)

\(\Rightarrow5n\left(n+1\right)⋮2\)(2)

\(\text{Từ (1) và (2)}\Rightarrow5n\left(n+1\right)⋮10\text{ vì (2,5)=1}\)

\(\text{Vậy A⋮10}\)

24 tháng 9 2020

               Bài làm :

\(a\text{)}\left(n^3-n\right)=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)=\left(n-1\right)n\left(n+1\right)\)

Vì tích ba số tự nhiên liên tiếp ⋮ 6 nên : n3 - n ⋮ 6

=> Điều phải chứng minh

\(b\text{)}n^5-m=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left[\left(n^2-4\right)+5\right]=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Vì :

  • n(n-1)(n+1)(n-2)(n+2) là tích 5 số liên tiếp nên n(n-1)(n+1)(n-2)(n+2) ⋮ 5
  • 5n(n-1)(n+1) ⋮ 5

=> (n5-n) ⋮5

=> Điều phải chứng minh

 \(\text{c)}n^5-5n^3+4n=n\left(n^4-5n^2+4\right)=n\left(n^4-n^2-4n^2+4\right)=n\text{[}n^2\left(n^2-1\right)-4\left(n^2-1\right)\text{]}=n\left(n^2-1\right)\left(n^2-4\right)=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

\(\text{Vì : }n-2;n-1;n;n+1;n+2\text{là tích của 5 số nguyên liên tiếp nên chia hết cho 3,5,8}\)

Mà 3,5,8 nguyên tố cùng nhau nên :

\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮3.5.8=120\) \(\)

=> Điều phải chứng minh

24 tháng 9 2020

a) n3 - n = n( n2 - 1 ) = n( n - 1 )( n + 1 )

Ta có n( n - 1 ) là hai số tự nhiên liên tiếp => chia hết cho 2 (1)

n( n - 1 )( n + 1 ) là ba số tự nhiên liên tiếp => chia hết cho 3 (2)

Từ (1) và (2) => n( n - 1 )( n + 1 ) chia hết cho 6 hay n3 - n chia hết cho 6 ( đpcm ) 

b) n5 - n = n( n4 - 1 ) = n( n2 - 1 )( n2 + 1 ) = n( n - 1 )( n + 1 )( n2 + 1 )

= n( n - 1 )( n + 1 )[ ( n2 - 4 ) + 5 ]

= n( n - 1 )( n + 1 )( n2 - 4 ) + 5n( n - 1 )( n + 1 )

= n( n - 1 )( n + 1 )( n - 2 )( n + 2 ) + 5n( n - 1 )( n + 1 )

n( n - 1 )( n + 1 )( n - 2 )( n + 2 ) là tích của 5 số nguyên liên tiếp => chia hết cho 5 (1)

5n( n - 1 )( n + 1 ) chia hết cho 5 (2)

Từ (1) và (2) => đpcm

c) n5 - 5n3 + 4n = n( n4 - 5n2 + 4 )

Xét n4 - 5n2 + 4 (*)

Đặt t = n2 

(*) <=> t2 - 5t + 4 = t2 - t - 4t + 4 = t( t - 1 ) - 4( t - 1 ) = ( t - 1 )( t - 4 ) = ( n2 - 1 )( n2 - 4 )

=> n( n4 - 5n2 + 4 ) = n( n2 - 1 )( n2 - 4 ) = n( n - 1 )( n + 1 )( n - 2 )( n + 2 )

n( n - 1 ) là tích của hai số nguyên liên tiếp => chia hết cho 2 (1)

n( n - 1 )( n + 1 ) là tích của 3 số nguyên liên tiếp => chia hết cho 3 (2)

n( n - 1 )( n + 1 )( n - 2 ) là tích của 4 số nguyên liên tiếp => chia hết cho 4 (3)

n( n - 1 )( n + 1 )( n - 2 )( n + 2 ) là tích của 5 số nguyên liên tiếp => chia hết cho 5 (4)

Từ (1), (2), (3) và (4) => đpcm

6 tháng 11 2019

Câu hỏi của luu thi thao ly - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo link trên nhé!