K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2015

 Các phân số 1/201; 1/202;....;1/399 đều lớn hơn 1/400 nên 1/201+1/202+...+1/399+1/400>1/400 . 200 = 1/2

10 tháng 3 2017

1/201+1/202+...+1/400>1/400x200=200/400=1/2

24 tháng 7 2015

 Các phân số 1/201; 1/202;....;1/399 đều lớn hơn 1/400 nên 1/201+1/202+...+1/399+1/400>1/400 . 200 = 1/2

24 tháng 7 2015

\(\frac{1}{201}+\frac{1}{202}+...+\frac{1}{400}>\frac{1}{400}.200=\frac{200}{400}=\frac{1}{2}\)

=> điều phải chứng minh.

24 tháng 7 2015

Đinh Tuấn Việt thì lúc nào cũng giỏi rồi

6 tháng 2 2015

1/201>1/300,1/202>1/300.................1/300=1/300 =>S>1/300.100=1/3                                                 1/201<1/200, 1/202<1/300.................1/300<1/200=>S<1/200.100=1/2

12 tháng 4 2019

\(\frac{1}{201}>\frac{1}{400}\)

\(\frac{1}{202}>\frac{1}{400}\)

\(\frac{1}{203}>\frac{1}{400}\)

.................

\(\frac{1}{399}>\frac{1}{400}\)

\(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(199 số hạng \(\frac{1}{400}\))

\(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}+\frac{1}{400}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(200 số hạng \(\frac{1}{400}\)) = 200.\(\frac{1}{400}\)=\(\frac{1}{2}\)

⇒ A > \(\frac{1}{2}\)

Vậy A > \(\frac{1}{2}\) (ĐPCM)

28 tháng 7 2016

2.Có A=1/5+1/6+1/7+...+1/17

            =(1/5+1/6+1/7+...+1/10)+(1/11+1/12+1/13+..+1/17)

            Tới đây bạn tự tìm xem nó có bao nhiêu phân số

            A<1/5.6+1/11.7=6/5+7/11=101/55=\(1\frac{46}{55}\)<2

VẬy A<2

28 tháng 7 2016

1.Có A = tự viết ra

            =(1/5+1/6+..+1/10)+(1/11+1/12+..+1/17)

            Có bao nhiêu nhiêu ps tự tìm nhớ

         A>1/10 .6+1/17 .7=Tự làm các bước =86/85>1

Vậy A>1

27 tháng 4 2019

Đặt \(S=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{399}+\frac{1}{400}\)

Ta thấy :

\(\frac{1}{201}>\frac{1}{400}\)

\(\frac{1}{202}>\frac{1}{400}\)

...

\(\frac{1}{399}>\frac{1}{400}\)

\(\Rightarrow S>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)

có 200 dãy \(\Rightarrow S>\frac{200}{400}=\frac{1}{2}\)

Vậy : \(S>\frac{1}{2}\)