Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)
\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)
\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)
#)Giải :
a) Để C/m a và b là hai số đối nhau => a + b = 0
Ta có : \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Leftrightarrow2a^2+2b^2=a^2-2ab+b^2\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab+b^2=0\)
\(\Leftrightarrow a^2+2ab+b^2=0\)
\(\Leftrightarrow\left(a+b\right)^2=0a\Leftrightarrow a+b=0\)
\(\Rightarrowđpcm\)
Câu 2: Ta có: a , b ,c là các số thực dương ( bài cho )
=> Tồn tại 3 số thực dương x , y, z thỏa mãn : \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{x}{z}\)
=> \(\frac{a-1}{c}+\frac{c-1}{b}+\frac{b-1}{a}=\frac{x^3}{xyz}+\frac{y^3}{xyz}+\frac{z^3}{xyz}=\frac{x^3+y^3+z^3}{xyz}\)
<=>\(\frac{x^3+y^3+z^3}{xyz}\ge0=\frac{x^2y+y^2z+z^2x}{xyz}\)( Bước này tách 0 ra cho cùng mẫu )
<=> \(x^3+y^3+z^3\ge x^2y+y^2z+z^2x\)
Áp dụng BĐT TB cộng và TB nhân => \(x^3+y^3+z^3\ge3x^2y\)
Làm 2 BĐT tương tự rồi cộng vào => Đpcm
a)
Đặt \(A=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(\Rightarrow A=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\)
Áp dụng BĐT Schwarz , ta có :
\(A\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\) (1)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{ab+bc+ac}\ge3\) (2)
Từ (1) và (2) , suy ra : \(A\ge\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
b)
\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^2}{a+b+c}=4\left(a+b+c\right)\)
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
\(\frac{a+b+c}{9}\)nha
Đặt \(P=\frac{a^3}{\left(b+2c\right)^2}+\frac{b^3}{\left(c+2a\right)^2}+\frac{c^3}{\left(a+2b\right)^2}\)
Áp dụng bđt AM-GM cho 3 số dương a,b,c ta được:
\(\frac{a^3}{\left(b+2c\right)^2}+\frac{b+2c}{27}+\frac{b+2c}{27}\ge3\sqrt[3]{\frac{a^3}{\left(b+2c\right)^2}.\frac{b+2c}{27}.\frac{b+2c}{27}}=\frac{a}{3}\)
\(\frac{b^3}{\left(c+2a\right)^2}+\frac{c+2a}{27}+\frac{c+2a}{27}\ge3\sqrt[3]{\frac{b^3}{\left(c+2a\right)^2}.\frac{c+2a}{27}.\frac{c+2a}{27}}=\frac{b}{3}\)
\(\frac{c^3}{\left(a+2b\right)^2}+\frac{a+2b}{27}+\frac{a+2b}{27}\ge3\sqrt[3]{\frac{c^3}{\left(a+2b\right)^2}.\frac{a+2b}{27}.\frac{a+2b}{27}}=\frac{c}{3}\)
Cộng từng vế ta được:
\(P+\)\(\frac{6\left(a+b+c\right)}{27}\ge\frac{a+b+c}{3}\)
\(\Rightarrow P\ge\frac{a+b+c}{9}\)
Dấu"="xảy ra \(\Leftrightarrow a=b=c\)
Vì a,b,c không phải là số âm \(\Rightarrow a,b,c\ge0\)
Ta có 2 TH:
TH 1: a,b,c=0
Nếu a,b,c = 0 => a(a+b)(a+c)(a+b+c)=0
=> a(a+b)(a+c)(a+b+c)=0
TH 2: a,b,c >0
=> a(a+b) >0 => a(a+b)(a+c) >0
=> a(a+b)(a+c)(a+b+c) >0
Vậy a,b,c là các số không âm => a(a+b)(a+c)(a+b+c) \(\ge0\)
Đầu tiên , cần chứng minh \(x^2+xy+y^2\ge0\) với mọi x,y thuộc tập số thực.
Thật vậy , đặt \(A=x^2+y^2+xy\Rightarrow2A=\left(x+y\right)^2+x^2+y^2\Rightarrow A\ge0\)
Ta có : \(a\left(a+b\right)\left(a+c\right)\left(a+b+c\right)+b^2c^2=\left(a^2+ab+ac\right)\left(a^2+ab+ac+bc\right)+b^2c^2\)
Đặt \(x=a^2+ab+ac\) , \(y=bc\) , suy ra :
\(x\left(x+y\right)+y^2\ge0\Leftrightarrow x^2+xy+y^2\ge0\)luôn đúng.
Vậy bđt ban đầu dc chứng minh
Xét hiệu hai vế \(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)-8abc=0\) (1)
Mà ta có: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)-8abc=a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\)
\(\Rightarrow\) a = b = c. (đpcm)