K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

cau a sgk có nhé :))
câu b cm tổng quát là ok

30 tháng 9 2018

Đặt B = \(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{50}}\)

= \(1+2\left(\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}+...+\dfrac{1}{2\sqrt{50}}\right)\)

Đặt \(A=\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}+...+\dfrac{1}{2\sqrt{50}}\)

Xét A < \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{49}+\sqrt{50}}\)

=> A < \(\dfrac{\sqrt{2}-\sqrt{1}}{1}+\dfrac{\sqrt{3}-\sqrt{2}}{1}+...+\dfrac{\sqrt{50}-\sqrt{40}}{1}\)

=> A < -1 + \(\sqrt{50}\)

=> 2A < -2 + \(10\sqrt{2}\)

=> 2A + 1 = B < -2 + \(10\sqrt{2}\) + 1

=> B < -1 + \(10\sqrt{2}\) < \(10\sqrt{2}\) (1)

Xét \(\dfrac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-\sqrt{n}\right)\)

=> \(\dfrac{1}{\sqrt{1}}>2\left(\sqrt{2}-\sqrt{1}\right)\)

\(\dfrac{1}{\sqrt{2}}>2\left(\sqrt{3}-\sqrt{2}\right)\)

\(\dfrac{1}{\sqrt{3}}>2\left(\sqrt{4}-\sqrt{3}\right)\)

...

\(\dfrac{1}{\sqrt{50}}>2\left(\sqrt{51}-\sqrt{50}\right)\)

=> B > 2(\(\sqrt{51}-\sqrt{1}\))

=> B >-2 + \(10\sqrt{2}\) > \(5\sqrt{2}\)

5 tháng 10 2018

Cảm ơn bạn nha. Mà bạn bị nhầm 49 thành 40 ở dòng thứ 5 đó.

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Lời giải:

a) Ta thấy: \(a+b-2\sqrt{ab}=(\sqrt{a}-\sqrt{b})^2\geq 0, \forall a,b>0\)

\(\Rightarrow a+b\geq 2\sqrt{ab}>0\Rightarrow \frac{1}{a+b}\le \frac{1}{2\sqrt{ab}}\).

Vì $a> b$ nên dấu bằng không xảy ra . Tức \(\frac{1}{a+b}< \frac{1}{2\sqrt{ab}}\)

Ta có đpcm

b)

Áp dụng kết quả phần a:

\(\frac{1}{3}=\frac{1}{1+2}< \frac{1}{2\sqrt{2.1}}\)

\(\frac{1}{5}=\frac{1}{3+2}< \frac{1}{2\sqrt{2.3}}\)

\(\frac{1}{7}=\frac{1}{4+3}< \frac{1}{2\sqrt{4.3}}\)

.....

\(\frac{1}{4021}=\frac{1}{2011+2010}< \frac{1}{2\sqrt{2011.2010}}\)

Do đó:

\(\frac{\sqrt{2}-\sqrt{1}}{3}+\frac{\sqrt{3}-\sqrt{2}}{5}+...+\frac{\sqrt{2011}-\sqrt{2010}}{4021}\)

\(< \frac{\sqrt{2}-\sqrt{1}}{2\sqrt{2.1}}+\frac{\sqrt{3}-\sqrt{2}}{2\sqrt{3.2}}+\frac{\sqrt{4}-\sqrt{3}}{2\sqrt{4.3}}+....+\frac{\sqrt{2011}-\sqrt{2010}}{2\sqrt{2011.2010}}\)

\(=\frac{1}{2}-\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}-\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{2010}}-\frac{1}{2\sqrt{2011}}\)

\(=\frac{1}{2}-\frac{1}{2\sqrt{2011}}< \frac{1}{2}\) (đpcm)