Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/m \(\sqrt{a+n}+\sqrt{a-n}< 2\sqrt{a}\)
\(\left(\sqrt{a+n}+\sqrt{a-n}\right)^2< \left(2\sqrt{a}\right)^2\)
\(\Leftrightarrow a+n+a-n+2\sqrt{a^2-n^2}< 4a\)
\(2a+2\sqrt{a^2-n^2}< 2a+2\sqrt{a^2}\)
\(2a+2\sqrt{a^2-n^2}< 4a\)
=>\(\sqrt{2001-1}+\sqrt{2001+1}< 2\sqrt{2001}\)
nên\(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\left(đpcm\right)\)
Xét với n là số tự nhiên không nhỏ hơn 1
Ta có : \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng điều trên ta có
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2002\sqrt{2001}+2001\sqrt{2002}}\)
\(=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2001}}-\frac{1}{\sqrt{2002}}\)
\(=1-\frac{1}{\sqrt{2002}}< 1-\frac{1}{\sqrt{2025}}=1-\frac{1}{45}=\frac{44}{45}\)
ta chứng minh công thức tổng quát sau
\(\frac{1}{\left[n+1\right]\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left[n+1\right]}\left[\sqrt{n+1}+\sqrt{n}\right]}\)
=\(\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left[n+1\right]}\left[n+1-n\right]}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left[n+1\right]}}\)
=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
ta có \(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)
\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
........
\(\frac{1}{2002\sqrt{2001}+2001\sqrt{2002}}=\frac{1}{\sqrt{2001}}-\frac{1}{\sqrt{2002}}\)
=> \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+..+\frac{1}{2002\sqrt{2001}+2001\sqrt{2002}}\)
=\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2001}}-\frac{1}{\sqrt{2002}}\)
=\(1-\frac{1}{\sqrt{2002}}< \frac{44}{45}\)
Đặt \(\sqrt{2002}=a,\sqrt{2003=b}\)
Ta có:
VT = \(\dfrac{a^2}{b}+\dfrac{b^2}{a}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng engel ta có:
\(\dfrac{a^2}{b}+\dfrac{b^2}{a}\ge\dfrac{\left(a+b\right)^2}{a+b}=a+b\)
hay \(\dfrac{2002}{\sqrt{2003}}+\dfrac{2003}{\sqrt{2002}}\ge\sqrt{2002}+\sqrt{2003}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b\)
Mà \(a\ne b\)
\(\Rightarrow\)\(\dfrac{2002}{\sqrt{2003}}+\dfrac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)(đpcm)
a) \(\sqrt{a}+1>\sqrt{a+1}\)\(\Leftrightarrow\)\(a+2\sqrt{a}+1>a+1\)\(\Leftrightarrow\)\(2\sqrt{a}>0\)( luôn đúng \(\forall x>0\) )
b) \(a-1< a\)\(\Leftrightarrow\)\(\sqrt{a-1}< \sqrt{a}\)
c) \(\left(\sqrt{6}-1\right)^2=6-2\sqrt{6}+1>3-2\sqrt{3.2}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\)
do \(\sqrt{6}-1>0;\sqrt{3}-\sqrt{2}>0\) nên \(\sqrt{6}-1>\sqrt{3}-\sqrt{2}\) ( đpcm )
Ta có:
\(\sqrt{2002}-\sqrt{2001}=\dfrac{1}{\sqrt{2002}+\sqrt{2001}}\)
\(\sqrt{2001}-\sqrt{2000}=\dfrac{1}{\sqrt{2001}+\sqrt{2000}}\)
Do \(\sqrt{2002}+\sqrt{2001}>\sqrt{2001}+\sqrt{2000}\)
\(\Rightarrow\dfrac{1}{\sqrt{2002}+\sqrt{2001}}< \dfrac{1}{\sqrt{2001}+\sqrt{2000}}\)
hay \(\sqrt{2002}-\sqrt{2001}\) < \(\sqrt{2001}-\sqrt{2000}\)
\(\Rightarrow\sqrt{2002}-2\sqrt{2001}+\sqrt{2000}< 0\) (đpcm)