K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Đặt \(\sqrt{x^2+x+3}=a\)

Ta sẽ có \(\dfrac{a^2}{a}+\dfrac{1}{a}=a+\dfrac{1}{a}\ge2\cdot\sqrt{a\cdot\dfrac{1}{a}}=2\left(đpcm\right)\)

b: Đặt \(\sqrt{x^2+x+3}=b\)

Ta sẽ có \(\dfrac{b^2+4}{b}=b+\dfrac{4}{b}\ge2\cdot\sqrt{b\cdot\dfrac{4}{b}}=4\)

3 tháng 7 2017

a, \(=\frac{x^2+x+4}{\sqrt{x^2+x+3}}\), Xét 2 trường hợp \(x\ge0\)thì \(\sqrt{x^2+x+3}\)lớn hơn 1.5 

vì \(\sqrt{3}=1.732050808>1.5\)

... Trường hợp x<0 thì \(x^2-x+3\ge3\)

=> \(\sqrt{x^2+x+3}>1.5\)

Ta xét tương tự với trường hợp \(x^2+x+4\)lớn hơn hoặc bằng 4 với 2 TH:

=> Biểu thức sẽ lớn hơn : \(\frac{4}{1,5}>2\)

b, C/m tương tự với vế trên luôn lớn hơn hoặc = 7 ;

Khi ấy biểu thức sẽ lớn hơn:

\(\frac{7}{\sqrt{3}}=4.041451884>4\)

=>ĐPCM

3 tháng 9 2016

a) 8\(\sqrt{x}\) = \(x^2\) ( x lon hon hoac bang 0)

\(\left(8\sqrt{x}\right)^2\) = \(\left(x^2\right)^2\)

64x=\(x^4\) 

\(x^4\)_ 64x = 0

x (\(x^3\) - 64) = 0

suy ra\(\orbr{\begin{cases}x=0\\x^3-64=0\end{cases}}\) suy ra \(\orbr{\begin{cases}x=0\\x^3=64\end{cases}}\) suy ran \(\orbr{\begin{cases}x=0\\x^3=4^3\end{cases}}\) suy ra \(\orbr{\begin{cases}x=0\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)

Vay x= 0; x=4

b) \(\sqrt{3x-2}\) = x (x lon hon hoac bang \(\frac{2}{3}\) )

\(\left(\sqrt{3x-2}\right)^2\) = \(x^2\)

3x - 2=\(x^2\)

\(x^2-3x+2=0\)

\(^{x^2}-1x-2x+2=0\)

\(\left(x^2-1x\right)-\left(2x-2\right)=0\)

\(x\left(x-1\right)-2\left(x-1\right)=0\)

(x-1)(x-2)=0

suy ra \(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\) suy ra \(\orbr{\begin{cases}x=1\left(tm\right)\\x=2\left(tm\right)\end{cases}}\)

vay \(x=1;x=2\)

22 tháng 7 2017

bn lấy máy tính mà tính ý

22 tháng 7 2017

Bài1:

Ta có:

a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)

b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)

c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)

Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)

Bài 2:

Không có đề bài à bạn?

Bài 3:

a)\(\sqrt{x}-1=4\)

\(\Rightarrow\sqrt{x}=5\)

\(\Rightarrow x=\sqrt{25}\)

\(\Rightarrow x=5\)

b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)

Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)

\(\Rightarrow\left(x-1\right)^2=16\)

\(\Rightarrow\left(x-1\right)^2=4^2\)

\(\Rightarrow x-1=4\)

\(\Rightarrow x=5\)

3 tháng 12 2017

1)

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}=\dfrac{100}{\sqrt{100}}=10\left(đpcm\right)\)

2)

\(C=-18-\left|2x-6\right|-\left|3y+9\right|\le-18\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)

Bài 1: 

a: \(\Leftrightarrow2-3\sqrt{x}+5\sqrt{x}=8\)

=>2 căn x=6

=>căn x=3

=>x=9

b: \(\Leftrightarrow\dfrac{1}{\sqrt{x}}\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{6}\right)=\dfrac{2}{3}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x}}=\dfrac{2}{3}:\dfrac{2}{3}=1\)

=>x=1

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

a)

\(3(2x-\frac{1}{2})+2(\frac{3}{8}-x)=2,75\)

\(\Leftrightarrow 6x-\frac{3}{2}+\frac{3}{4}-2x=2,75\)

\(\Leftrightarrow 4x=\frac{7}{2}\Rightarrow x=\frac{7}{8}\)

b)

\(x-\frac{1}{3}(5-3x)=1\frac{1}{2}x+5\frac{1}{2}\)

\(\Leftrightarrow x-\frac{5}{3}+x=x+\frac{1}{2}x+\frac{11}{2}\)

\(\Leftrightarrow \frac{1}{2}x=\frac{43}{6}\) \(\Rightarrow x=\frac{43}{3}\)

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

c) \(\sqrt{x-1}=4\Rightarrow x-1=4^2\Rightarrow x=4^2+1=17\)

d)

\(|x|-5\frac{3}{7}|-x|-\frac{3}{4}=2|x|-1\frac{1}{7}\)

\(\Leftrightarrow |x|-\frac{38}{7}|x|-\frac{3}{4}=2|x|-\frac{8}{7}\)

\(\Leftrightarrow |x|(1-\frac{38}{7}-2)=\frac{3}{4}-\frac{8}{7}\)

\(\Leftrightarrow |x|.\frac{-45}{7}=\frac{-11}{28}\)

\(\Leftrightarrow |x|=\frac{11}{180}\Rightarrow \left[\begin{matrix} x=\frac{11}{180}\\ x=-\frac{11}{180}\end{matrix}\right.\)

13 tháng 8 2018

a)\(\sqrt{x}=4\Leftrightarrow x=4^2\Leftrightarrow x=16\)

b)\(\sqrt{x-2}=3\Leftrightarrow x-2=3^2\Leftrightarrow x=9-2=7\)

c)\(\sqrt{\dfrac{x}{3}-\dfrac{7}{6}}=\dfrac{1}{6}\Leftrightarrow\dfrac{x}{3}-\dfrac{7}{6}=\dfrac{1}{36}\Leftrightarrow\dfrac{x}{3}=-\dfrac{41}{36}\Leftrightarrow x=-\dfrac{41}{12}\)

d)\(x^2=7vớix< 0\)

\(\Leftrightarrow\left(-x\right)^2=7\Leftrightarrow-x=\sqrt{7}\Leftrightarrow x=-\sqrt{7}\)

e)\(x^2-4=0với>0\)

\(\Leftrightarrow x^2=4\Leftrightarrow x=\sqrt{4}=2\)

f)\(\left(2x+7\sqrt{7}\right)^2=7\)

\(\Leftrightarrow4x^2+\sqrt{5488}+343=7\)

\(\Leftrightarrow4x^2+\sqrt{5488}=-336\)

\(\Leftrightarrow4x^2=28\left(12-\sqrt{7}\right)\Leftrightarrow x^2=\dfrac{28\left(12-\sqrt{7}\right)}{4}=7\left(12-\sqrt{7}\right)\)

\(\Leftrightarrow x=\sqrt{7\left(12-\sqrt{7}\right)}=\sqrt{84-7\sqrt{7}}\)

13 tháng 8 2018

a) \(\sqrt{x}=4\Rightarrow x=16\)

b) \(\sqrt{x-2}-3\\ \Rightarrow x-2=9\\ \Rightarrow x=11\)

c) \(x^2=7\\ \Rightarrow x=\pm\sqrt{7}\\ Vớix< 0\Rightarrow x=-\sqrt{7}\)

d) \(x^2-4=0\\\Rightarrow x=\pm2\\ Vớix>0\Rightarrow x=2 \)