\(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

\(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\)

\(=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(=2-\dfrac{1}{n}< 2\)

\(\Rightarrow1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 2\left(đpcm\right)\)

Vậy...

26 tháng 9 2017

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{18.19.20}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{4}-\dfrac{1}{2.19.20}< \dfrac{1}{4}\)

Cái B TT nhé

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\\ =1-\dfrac{1}{n}< 1\)

D TT

E mk thấy nó ss ớ

26 tháng 9 2017

ai thế

Y
9 tháng 2 2019

+ \(5N=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{98}}\)

\(N=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{98}}+\dfrac{1}{5^{99}}\)

\(\Rightarrow4N=5N-N=1-\dfrac{1}{5^{99}}\)

\(\Rightarrow N=\dfrac{1}{4}-\dfrac{1}{4\cdot5^{99}}< \dfrac{1}{4}\) ( đpcm )

28 tháng 5 2017

\(A=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{n}}>\sqrt{n}\left(1\right)\)

Với \(n=2\), BĐT \(\left(1\right)\) trở thành \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}>\sqrt{2}\) (đúng)

Giả sử \(\left(1\right)\) đúng với \(n=k\), nghĩa là \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{k}}>\sqrt{k}\left(2\right)\)

Ta chứng minh \(\left(1\right)\) đúng với \(n=k+1\). Thật vậy, từ \(\left(2\right)\) suy ra:

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{k}}+\dfrac{1}{\sqrt{k+1}}>\sqrt{k}+\dfrac{1}{\sqrt{k+1}}\)

\(\sqrt{k}+\dfrac{1}{\sqrt{k+1}}=\dfrac{\sqrt{k\left(k+1\right)}+1}{\sqrt{k+1}}>\sqrt{k+1}\)

Nên \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{k}}+\dfrac{1}{\sqrt{k+1}}>\sqrt{k+1}\)

Tức là \(\left(1\right)\) đúng với \(n=k+1\).

Theo nguyên lí quy nạp, (1) đúng với mọi số tự nhiên \(n>1\)

20 tháng 7 2018

1/(n + 1) + 1/(n + 2) + ... + 1/(2n - 2) + 1/(2n - 1) + 1/(2n) > 13/24 (n ∈ N*)

Với n = 1, ta có : 1/2 + 1/3 + ... + 1/2 > 13/24 (đúng)

Giả sử bất đẳng thức đúng với n = k

Nghĩa là : 1/(k + 1) + 1/(k + 2) + ... + 1/(2k - 2) + 1/(2k - 1) + 1/(2k) > 13/24 (1)

Ta cần chứng minh bất đẳng thức đúng với n = k + 1

Nghĩa là : 1/(k + 2) +1/(k + 3) + ... + 1/(2k) + 1/(2k + 1) + 1/(2k + 2) > 13/24 (2)

<=> [1/(k + 1) + 1/(k + 2) + 1/(k + 3) + ... + 1/(2k)] + 1/(2k + 1) + 1/(2k + 2) - 1/(k + 1) > 13/24

Ta chứng minh : 1/(2k + 1) + 1/(2k + 2) - 1/(k + 1) > 0 (3)

<=> [2(k + 1) + (2k + 1) - 2(2k + 1)] / [2(2k + 1)(k + 1)] > 0

<=>1 / [2(2k + 1)(k + 1)] > 0 (4)

Vì k ∈ N* => [2(2k + 1)(k + 1)] > 0 => (4) đúng => (3) đúng

Cộng (1) và (3) được :

1/(k + 2) +1/(k + 3) + ... + 1/(2k) + 1/(2k + 1) + 1/(2k + 2) > 13/24

=> (2) đúng

Theo quy nạp => Điều cần chứng minh là đúng => đpcm

20 tháng 7 2018

Làm cách thông dụng nhất là quy đồng .

Khai triển VT ta có :

\(1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}\)

\(=\dfrac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)

\(=\dfrac{n^4+2n^3+n^2+n^2+2n+1+n^2}{n^2\left(n+1\right)^2}\)

\(=\dfrac{n^4+2n^3+3n^2+2n+1}{n^2\left(n+1\right)^2}\)

\(=\dfrac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}\)

Vậy đẳng thức đã được chứng minh :3

7 tháng 10 2021

a) \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{2018}{2019!}\\ =\left(\dfrac{1}{1!}-\dfrac{1}{2!}\right)+\left(\dfrac{1}{2!}-\dfrac{1}{3!}\right)+...+\left(\dfrac{1}{2018!}-\dfrac{1}{2019!}\right)\\ =1-\dfrac{1}{2019!}< 1\)

7 tháng 10 2021

b) \(\dfrac{1\cdot2-1}{2!}+\dfrac{2\cdot3-1}{3!}+...+\dfrac{999\cdot1000-1}{1000!}\\ =\dfrac{1\cdot2}{2!}-\dfrac{1}{2!}+\dfrac{2\cdot3}{3!}-\dfrac{1}{3!}+...+\dfrac{999-1000}{1000!}-\dfrac{1}{1000!}\\ =\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{1!}-\dfrac{1}{3!}+\dfrac{1}{2!}-\dfrac{1}{4!}+...+\dfrac{1}{999!}+\dfrac{1}{1000!}\\ =1+1-\dfrac{1}{1000!}\\ =2-\dfrac{1}{1000!}< 2\)

a: Gọi số nguyên cần tìm là x

Theo đề, ta có: \(\dfrac{1}{3}+\left(\dfrac{2}{4}-1\dfrac{2}{5}\right)< x< 2\dfrac{1}{7}+\left(\dfrac{-2}{5}-\dfrac{1}{4}\right)\)

\(\Leftrightarrow\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{7}{5}< x< \dfrac{15}{7}-\dfrac{2}{5}-\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{20}{60}+\dfrac{30}{60}-\dfrac{84}{60}< x< \dfrac{15\cdot20-2\cdot28-35}{140}\)

\(\Leftrightarrow-\dfrac{34}{60}< x< \dfrac{209}{140}\)

mà x là số nguyên

nên \(x\in\left\{0;1\right\}\)

b: Gọi số nguyên cần tìm là x

Theo đề, ta có: \(\dfrac{7}{3}+\dfrac{3}{4}-\dfrac{1}{5}>x>\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{2}{7}\)

\(\Leftrightarrow\dfrac{7\cdot20+3\cdot15-12}{60}>x>\dfrac{56-21+2\cdot12}{84}\)

\(\Leftrightarrow\dfrac{173}{60}>x>\dfrac{59}{84}\)

mà x là số nguên

nên \(x\in\left\{2;1\right\}\)

28 tháng 10 2017

Ta có: \(A=\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+\dfrac{1}{2^8}+...+\dfrac{1}{2^{100}}\)

\(\Rightarrow2^2A=1+\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{98}}\)

\(\Rightarrow2^2A-A=\left(1+\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{98}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+\dfrac{1}{2^8}+...+\dfrac{1}{2^{100}}\right)\)

\(\Rightarrow3A=1-\dfrac{1}{2^{100}}\)

\(\Rightarrow A=\dfrac{1-\dfrac{1}{2^{100}}}{3}< \dfrac{1}{3}\)(đpcm)

28 tháng 1 2018

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+........+\dfrac{1}{100^2}\)

Ta có :

\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)

\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)

...................

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Leftrightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+.......+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+......+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}=\dfrac{6}{25}\)

\(\dfrac{1}{6}< \dfrac{5}{26}< \dfrac{1}{4}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+.........+\dfrac{1}{100^2}< \dfrac{6}{25}\)

\(\Leftrightarrow\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+.......+\dfrac{1}{100^2}< \dfrac{1}{4}\left(đpcm\right)\) \(\left(1\right)\)