K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

Cho phương trình \(x^3-x-1=0\). Giả sử x0 là một nghiệm của phương trình đã cho.

a)Chứng minh rằng x0>0

b)Tính giá trị biểu thức \(P=\frac{x_0^2-1}{x_{0^3}}.\sqrt{2x^2_0+3x_0+2}\)

15 tháng 9 2019

\(f\left(x_0\right)=ax_0^2+bx_0+c=0\)

\(g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a=\frac{c+bx_0+ax_0^2}{x_0^2}=\frac{0}{x_0^2}=0\left(đpcm\right)\)

22 tháng 4 2016

 P(x) có hai nghiệm ​​​x1, xkhác nhau => P(x1) = 0 và P(x2) = 0

=>  P(x1) = P(x2) => a.x1 + b = a.x2 + b => a.x1 = a.x2 => a.(x1 - x2) = 0 => a = 0 (Vì x1 khác x2 nên x1 - x khác 0)

Mà  P(x1) = 0 => a.x1 + b = 0 ; a = 0 => b = 0

Vậy a = b = 0

22 tháng 4 2016

 P(x) có hai nghiệm ​​​x1, xkhác nhau => P(x1) = 0 và P(x2) = 0

=>  P(x1) = P(x2) => a.x1 + b = a.x2 + b => a.x1 = a.x2 => a.(x1 - x2) = 0 => a = 0 (Vì x1 khác x2 nên x1 - x khác 0)

Mà  P(x1) = 0 => a.x1 + b = 0 ; a = 0 => b = 0

Vậy a = b = 0

30 tháng 4 2015

 P(x) có hai nghiệm ​​​x1, xkhác nhau => P(x1) = 0 và P(x2) = 0

=>  P(x1) = P(x2) => a.x1 + b = a.x2 + b => a.x1 = a.x2 => a.(x1 - x2) = 0 => a = 0 (Vì x1 khác x2 nên x1 - x khác 0)

Mà  P(x1) = 0 => a.x1 + b = 0 ; a = 0 => b = 0

Vậy a = b = 0

16 tháng 6 2015

P(x) = ax+ b = 0 =

=> ãx = -b => x = -b / a = x0 

1/ x0 = 1/-b/a = a/-b thay vao Q(x) ta co

 Q(x) = b. -a /b + a = -a + a = 0 

Vậy x0 là nghiệm của P(x)=ax+b (a khác 0, b khác 0) thì 1/x0 là nghiệm của đa thức Q(x)=bx+a

 

25 tháng 8 2019

\(x_1,x_2\)là các nghiệm của P(x) = ax + b nên ta có:

\(P\left(x_1\right)=ax_1+b=0\left(1\right)\)

\(P\left(x_2\right)=ax_2+b=0\left(2\right)\)

\(P\left(x_1\right)-P\left(x_2\right)=a\left(x_1-x_2\right)=0\left(3\right)\)

Vì \(x_1\ne x_2\)nên \(x_1-x_2\ne0,\)từ (3) suy ra a = 0.

Thay a = 0 vào (1): \(0.x_1+b\Rightarrow b=0.\)Vậy a = b = 0. Đa thức không.