K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(\sqrt{2}\)là số vô tỉ

\(\sqrt{3}\)là số vô tỉ

\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm ) 

b) tương tự :

 \(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)

\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ

8 tháng 10 2019

c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ

d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ

\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ

20 tháng 10 2019

                                                      Bài giải

a, Ta có :

\(\sqrt{2}\) là số vô tỉ \(\Rightarrow\) \(7-\sqrt{2}\) là số vô tỉ

b, Ta có :

\(\sqrt{5}\)là số vô tỉ \(\Rightarrow\sqrt{5}+24\) là số vô tỉ

22 tháng 10 2019

♥๖Lan_Phương_cute#✖#girl_học_đường๖ۣۜ💋:))♥。◕‿◕。

chứng minh them \(\sqrt{2}\)\(\sqrt{5}\) là số vô tỉ nữa ! Vào đây tham khảo :

https://olm.vn/hoi-dap/detail/227642288657.html

27 tháng 10 2016

Chứng minh cái này thì đơn giản thôi! 
Mình xin trình bày cách chứng minh mà mình tâm đắc nhất: 
Giả sứ căn 2 là số hữu tỉ=> căn 2 có thể viết dưới dạng m/n.(phân số m/n tối giản hay m,n nguyên tố cùng nhau) 
=>(m/n)^2=2 
=>m^2=2n^2 
=>m^2 chia hết cho 2 
=>m chia hết cho 2 
Đặt m=2k (k thuộc Z) 
=>(2k)^2=2n^2 
=>2k^2=n^2 
=> n^2 chia hết cho 2 
=> n chia hết cho 2. 
Vậy m,n cùng chia hết cho 2 nên chúng không nguyên tố cùng nhau 
=> Điều đã giả sử là sai => căn 2 là số vô tỉ.

2 tháng 7 2015

mk nghĩ thế này

a,b) Ta thấy: không có số nào mũ 2 lên được 15 và 2

=>\(\sqrt{15},\sqrt{2}\) là số vô tỉ

c) ta có: \(\sqrt{2}\) là số vô tỉ

mà Số tự nhiên - số vô tỉ luôn luôn là số vô tỉ

=>đpcm

nha bạn

10 tháng 9 2020

a) Bằng phản chứng giả sử \(\sqrt{2}\)là số hữu tỉ

---> Đặt \(\sqrt{2}=\frac{a}{b}\)với ƯCLN(a,b)=1 (tức là a/b tối giản), a,b>0

\(\Rightarrow b\sqrt{2}=a\Rightarrow2b^2=a^2\Rightarrow a^2\)là số chẵn \(\Rightarrow a\)là số chẵn

Đặt \(a=2k\Rightarrow b\sqrt{2}=2k\Rightarrow2b^2=4k^2\Rightarrow b^2=2k^2,k\inℕ\)

\(\Rightarrow b^2\)là số chẵn\(\Rightarrow b\)là số chẵn

Vậy \(2\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết--->đpcm

b) Bằng phản chứng giả sử \(3\sqrt{3}-1\)là số hữu tỉ

---> Đặt \(3\sqrt{3}-1=\frac{a}{b}\)với ƯCLN(a,b)=1 và a,b>0

\(\Rightarrow3b\sqrt{3}=a+b\Rightarrow27b^2=\left(a+b\right)^2\Rightarrow\left(a+b\right)^2⋮9\Rightarrow a+b⋮3\)

Đặt \(a+b=3k,k\inℕ\Rightarrow a=3k-b\Rightarrow\frac{3k-b}{b}=3\sqrt{3}-1\Rightarrow\frac{3k}{b}=3\sqrt{3}\)

\(\Rightarrow k^2=3b^2\Rightarrow k^2⋮3\Rightarrow k⋮3\)---> Đặt \(k=3l,l\inℕ\Rightarrow a=9l-b\Rightarrow\frac{9l-b}{b}=3\sqrt{3}-1\Rightarrow\frac{9l}{b}=3\sqrt{3}\)

\(\Rightarrow b^2=3l^2\Rightarrow b^2⋮3\Rightarrow b⋮3\)

\(\Rightarrow3\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết---> đpcm

(Bài dài quá, giải mệt vler !!)

5 tháng 10 2020

Ta có: \(\sqrt{5}\) là 1 số vô tỉ

=> \(2+\sqrt{5}\) là 1 số vô tỉ

=> \(\sqrt{2+\sqrt{5}}\) là số vô tỉ

=> đpcm

5 tháng 10 2020

Giả sử \(\sqrt{2+\sqrt{5}}=q\left(q\inℚ\right)\)

\(\Rightarrow2+\sqrt{5}=q^2\inℚ\)

\(\Leftrightarrow\sqrt{5}=q-2\inℚ\)(Vô lý vì \(\sqrt{5}\in I\))

Vậy điều giả sử là sai hay \(\sqrt{2+\sqrt{5}}\)là số vô tỉ