Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 1/22<1/1.2
1/32<1/2.3
1/42<1/3.4
................
1/8²<1/7.8
=>B<1/1.2+1/2.3+1/3.4+...+1/7.8
=>B<1-1/2+1/2-1/3+1/3-1/4+...+1/7-1/8
=>B<1-1/8
Vậy B < 1
b=1/22+1/32+1/42+...+1/82<1/1.2+1/2.3+1/3.4+......+1/7.8
b=1-1/2+1/2-1/3+1/3-1/4+....+1/7-1/8
b=1-1/8
b=7/8
<=>b<1
k cho mink nha
b=1/22+1/32+1/42+...+1/82<1/1.2+1/2.3+1/3.4+......+1/7.8
b=1-1/2+1/2-1/3+1/3-1/4+....+1/7-1/8
b=1-1/8
b=7/8
<=>b<1
owo
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{10-9}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}< 1\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\\ A< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\\ A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}\\ A< \frac{9}{10}< 1\Rightarrow A< 1\)
cm \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}< 1\)
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(\frac{1}{2}A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2013}}\)
\(\frac{1}{2}A-A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2013}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
\(-\frac{1}{2}A=\frac{1}{2^{2013}}-\frac{1}{2}\)
\(\Leftrightarrow A=1-\frac{1}{2^{2012}}< 1\)
\(\RightarrowĐPCM\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
\(\Rightarrow B=\frac{1}{2^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+...+\frac{1}{7.8}\)
\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< 1-\frac{1}{2}+...+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< 1-\frac{1}{8}\)
\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< \frac{7}{8}< 1\)
\(\Rightarrow B< 1\)
1.a)A = (1 - 1/3)(1-2/5)...(1-5/5)....(1-9/5)
=(1-1/3)....0.....(1-9/5)
=0
=>đpcm.
b)ta xét:
1/22 = 1/2x2 < 1/1x2
.............
1/82 = 1/8x8 <1/7x8
=>B < 1/1x2 + 1/2x3 ... + 1 + 1/7x8
<=> B <1 - 1/2 + 1/2 - 1/3 + ... + 1/7 - 1/8
<=> B < 1 - 1/8 = 7/8 < 1
=> B < 1 => đpcm
2.a) Đặt m = 2007(2006+2007) = 2006(2006 + 2007) + (2006+2007)
Đặt n = 2006(2007+2008) = 2006(2006+2007) + (2006 + 2006)
Ta thấy : (2006+2007) > (2006 + 2006) => m > n , áp dụng công thức "a.d > c.d <=> a/b > b/d (a,c thuộc Z// b,d thuộc N)
=> A > B
b)ta có: D = 196 + 197/197 + 198 = (196/197+198) + (197/197+198) < 196/197 + 197/198 = C
=> C > D
c)gọi 2010 là a
ta thấy : (a + 1)(a-3) = (a - 1)(a - 3) + 2(a - 3) < (a - 1)(a - 3) + 2(a - 1) = (a - 1)(a - 1)
áp dụng: ad > bc <=> a/b > c/d ( a,b,c,d thuộc Z// b,d > 0)
=> E > F
Có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{8^2}< \frac{1}{7.8}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow B< 1-\frac{1}{8}< 1\)
\(\Rightarrow B< 1\) \(\Rightarrowđpcm\)
Đặt \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+....+\frac{1}{2007^2}\)\(A< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{2006.2007}\)
\(=\frac{5-4}{4.5}+\frac{6-5}{6.5}+....+\frac{2007-2006}{2006.2007}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{2006}-\frac{1}{2007}\)
\(=\frac{1}{4}-\frac{1}{2007}\)
\(\Leftrightarrow A< \frac{1}{4}-\frac{1}{2007}< \frac{1}{4}\)
vậy đpcm