Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
x5y-xy5=xy(x4-y4)=xy(x4-1+y4+1)
=xy(x4-1)-xy(y4-1)=xy(x2-1)(x2+1)-xy(y2-1)(y2+1)
=xy(x-1)(x+1)(x2+1)-xy(y-1)(y+1)(y2-1)
Mà:xy(x-1)(x+1)(x2+1) chia hết 2;3;5
=>xy(x-1)(x+1)(x2+1) chia hết cho 30
Cmtt:xy(y-1)(y+1)(y2+1) chia hết cho 30
Nên x5y-xy5 chia hết cho 30
Bài 2:
x2+y2+z2=y(x+z)
<=>x2+y2+z2-yx-yz=0
<=>2x2+2y2+2z2-2yx-2yz=0
<=>(x – y)2 + (y – z)2 + x2 + z2 = 0
<=>x – y = y – z = x = z = 0
<=>x=y=z=0
a: \(\Leftrightarrow x^2-2x+1+y^2+2y+1+z^2-4z+4=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+\left(z-2\right)^2=0\)
=>x=1; y=-1; z=2
b: \(a^2\left(a+1\right)+2a\left(a+1\right)\)
\(=\left(a+1\right)\left(a^2+2a\right)\)
\(=a\left(a+1\right)\left(a+2\right)\)
Vì a;a+1;a+2 là ba số nguyên liên tiếp
nên \(a\left(a+1\right)\left(a+2\right)⋮3!\)
hay \(a\left(a+1\right)\left(a+2\right)⋮6\)