Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)
2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)
3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0
4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)
5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)
1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)
=> Đpcm
2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)
Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)
=> Đpcm
3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)
\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)
\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)
=> Đpcm
4,5 làm tương tự
E=4x2+5x+5>0 với mọi x
=(4x2 +4x+1)+4
=(2x+1)\(^2\)+4
Với mọi x thuộc R thì (2x+1)\(^2\)>=0
Suy ra(2x+1)\(^2\)+4>=4>0
Hay E>0 với mọi x thuộc R(đpcm)
F=5x2-6x+7>0 với mọi x
=(5x\(^2\)-6x+\(\dfrac{36}{25}\))+\(\dfrac{139}{25}\)
=5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)
Với mọi x thuộc R thì 5\(\left(x-\dfrac{6}{5}\right)^2\)>=0
Suy ra 5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)>0
Hay F >0 với mọi x(đpcm)
G=-x2+5x -6<0 với mọi x
=-(x2-5x+6,25)+0,25
=-(x-2,5)2 +0,25
Với mọi x thuộc R thì -(x-2,5)2 <=0
Suy ra -(x-2,5)2 +0,25<0
Hay G<0 với mọi x (đpcm)
chúc bạn học tốt ạ
Lời giải:
\(-x^2+4x-5=-(x^2-4x+5)=-[(x^2-4x+4)+1]=-[(x-2)^2+1]\)
Ta thấy \((x-2)^2\geq 0, \forall x\in\mathbb{Z}\Rightarrow (x-2)^2+1\geq 1>0, \forall x\in \mathbb{Z}\)
\(\Rightarrow -x^2+4x-5=-[(x-2)^2+1]< 0, \forall x\in\mathbb{Z}\)
Ta có đpcm
a)x2-6x+10
Ta có:x2-6x+10=x2-2.3x+9+1
=(x-3)2+1
Vì (x-3)2\(\ge\)0
Suy ra:(x-3)2+1\(\ge\)1(đpcm)
b)4x-x2-5
Ta có:4x-x2-5=-(x2-4x+5)
=-(x2-2.2x+4)-1
=-1-(x-2)2
Vì -(x-2)2\(\le\)0
Suy ra:-1-(x-2)2\(\le\)-1(đpcm)
a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1>0\) với mọi x
b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\) với mọi x
a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)
b) \(x-x^2-3=-\left(x^2-x+3\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)
a) \(x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1>0\)
hay \(x^2-6x+10>0\left(đpcm\right)\)
b) \(4x-x^2-5=-\left(x^2-4x\right)-5=-\left(x^2-4x+4\right)+4-5\)
\(=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\forall x\)nên \(-\left(x-2\right)^2-1< 0\)
hay \(4x-x^2-5< 0\left(đpcm\right)\)
a) Ta có:
\(x^2-6x+10=x^2-6x+9+1\) 1
\(=\left(x-3\right)^2+1\)
vì \(\left(x-3\right)^2\ge0\forall x\in R\) ;1>0
\(\Rightarrow\left(x-3\right)^2+1\ge1\forall x\in R\)
=>đpcm
b)
\(4x-x^2-5=-\left(x^2-4x+4\right)-1\)
\(=-\left(x-2\right)^2-1\)
vì:\(-\left(x-2\right)^2\le0\forall x\in R\) ;-1<0
=>..........
vậy...
hc tốt
\(-4x^2+4x-12< 0
\)
\(\Leftrightarrow-\left(4x^2-4x+1\right)-11< 0\)
\(\Leftrightarrow-\left(2x-1\right)^2-11< 0\left(đpcm\right)\)
Ta có: \(-4x^2+4x-12=-\left(2x\right)^2+4x-1-11\)=\(\left[-\left(2x\right)^2+4x-1\right]-11\)
\(=-\left(2x-1\right)^2-11\)
Vì \(\left(2x-1^2\right)>0\)\(\forall x\)
\(-\left(2x-1\right)^2< 0\)\(\forall x\)
\(-\left(2x-1\right)^2-11< -11< 0\)\(\forall x\)
hay \(-4x^2+4x-12< 0\)\(\forall x\)
a,2x2+8x+20=2(x2+4x)+20
=2(x2+4x+4)+20-4.2
=2(x+2)2+12
Ta có : 2(x+2)2 \(\ge0với\forall x\)
12 > 0
\(\Rightarrow\)2(x+2)2+12>0 với \(\forall x\)
\(\Rightarrow\)2x2+8x+20>0 với \(\forall\)x
b,x4-3x2+5
=(x4-3x2)+5
=(x4-2.\(\frac{3}{2}\)x2+\(\frac{9}{4}\))+5-\(\frac{9}{4}\)
=(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}\)
Có : (x2-3/2)2\(\ge0với\forall x\)
\(\frac{11}{4}\)>0
\(\Rightarrow\)(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}>0với\forall x\)