K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

bằng niềm tin

15 tháng 3 2017

4\(^{n+3}\)+ 4\(^{n+2}\)- 4\(^{n+1}\)- 4\(^n\)=4\(^3\).4\(^n\)+ 4\(^2\).4\(^n\)- 4 . 4\(^n\)-4\(^n\)

= 64 . 4\(^n\) + 16 . 4\(^n\)- 4 . 4\(^n\)- 1 . 4\(^n\)

= 75 . 4\(^n\) = 75 . 4\(^n\) = 75 . 4 . 4\(^{n-1}\)

= 300 . 4\(^{n-1}\)chia het cho 300

18 tháng 2 2017

a, Ta có : 8.2n + 1n + 1 

= 8.2n + 1 (vì 1n + 1 lúc nào cũng bằng 1)

= 23 + n . 1

Mà 23 + n luôn luôn ko chia hết cho10

Nên 8.2n + 1n + 1  ko chi hết cho10

25 tháng 11 2015

http://olm.vn/hoi-dap/question/288217.html

24 tháng 11 2017

\(A=4^{n-1}\left(4+4^2+4^3\right)+4^{n+3}\left(4+4^2+4^3\right)+...+4^{n+17}\left(4+4^2+4^3\right)\)

\(\Rightarrow A=4^{n-1}\times84+4^{n+3}\times84+...+4^{n+17}\times84\)

\(\Rightarrow A=84\left(4^{n-1}+4^{n+3}+...+4^{n+17}\right)⋮84\)

Vậy \(A⋮84\) 

24 tháng 11 2017

Yêu cầu bài này là gì vậy bạn ơi ?

3 tháng 10 2017

Giúp mình nha!

Mai mình nộp rồi.

22 tháng 9 2017

Ta có:\(\dfrac{1}{2^3}< \dfrac{1}{1.2.3};\dfrac{1}{3^3}< \dfrac{1}{2.3.4};\dfrac{1}{4^3}< \dfrac{1}{3.4.5};...;\dfrac{1}{n^3}< \dfrac{1}{\left(n-1\right).n.\left(n+1\right)}\)Vậy:\(\dfrac{1}{2^3}+\dfrac{1}{3^3}+\dfrac{1}{4^3}+...+\dfrac{1}{n^3}< \dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{\left(n-1\right).n.\left(n+1\right)}\)Ta có:\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{\left(n-1\right).n.\left(n+1\right)}\)

=\(\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right).n}-\dfrac{1}{n.\left(n+1\right)}\right)\)=\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{n.\left(n+1\right)}\right)\)

=\(\dfrac{1}{4}-\dfrac{1}{2n.\left(n+1\right)}< \dfrac{1}{4}\)

Vì:\(\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}-\dfrac{1}{2n.\left(n+1\right)}< \dfrac{1}{4}\)

\(\Rightarrow\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\) hay \(A< \dfrac{1}{4}\)