K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

1) 

+) a, b, c là các số nguyên tố lớn hơn 3

=> a, b, c sẽ có dạng 3k+1  hoặc 3k+2

=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 3

=> (a-b)(b-c)(c-a) chia hết cho 3 (1)

+) a,b,c là các số nguyên tố lớn hơn 3 

=> a, b, c là các số lẻ và không chia hết cho 4

=> a,b, c sẽ có dang: 4k+1; 4k+3

=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 4

th1: Cả 3 số chia hết cho 4

=> (a-b)(b-c)(c-a) chia hết cho 64   (2)

Từ (1); (2) => (a-b)(b-c)(c-a) chia hết cho 64.3=192  vì (64;3)=1

=> (a-b)(b-c)(c-a) chia hết cho 48

th2: Có 2 số chia hết cho 4, Số còn lại chia hết cho 2

=> (a-b)(b-c)(c-a) chia hết cho 32  (3)

Từ (1) , (3) 

=> (a-b)(b-c)(c-a) chia hết cho 32.3=96  ( vì (3;32)=1)

=>  (a-b)(b-c)(c-a) chia hết cho 48

Th3: chỉ có một số chia hết cho 4, hai số còn lại chia hết cho 2

=>  (a-b)(b-c)(c-a) chia hết cho 16

Vì (16; 3)=1

=>  (a-b)(b-c)(c-a) chia hết cho 16.3=48

Như vậy với a,b,c là số nguyên tố lớn hơn 3

thì  (a-b)(b-c)(c-a) chia hết cho 48

11 tháng 6 2017

Vì p nguyên tố > 3 

=> p \(̸⋮\)3

=> p2 chia 3 dư 1 [vì số cp chia 3 dư 0,1]

Lại có: 2017 chia 3 dư 1

=> 2017 - p2 \(⋮3\)

Tương tự như trên, ta có:

p nguyên tố > 3 

=> p lẻ và p không chia hết cho 8

=> p2 chia 8 dư 1 [vì số cp chia 8 dư 0,1,4 và p lẻ]

Lại có: 2017 chia 8 dư 1

=> 2017 - p2 \(⋮\)8

Mà UCLN của 3 và 8 là 1 => 2017-p2 \(⋮\)24

11 tháng 6 2017

câu 2 chuyên HN 2017-2018 

25 tháng 9 2021

Mk mới 2k7 nên chưa hok nha

16 tháng 6 2015

BÀi 4 :VÌ p và 5 là 2 số nguyên tố cùng nhau nên p không chia hết cho 5 

Ta có P8n+3P4n-4 = p4n(p4n+3) -4 

Vì 1 số không chia hết cho 5 khi nâng lên lũy thừa 4n sẽ có số dư khi chia cho 5 là 1 

( cách chứng minh là đồng dư hay tìm chữ số tận cùng )

suy ra : P4n(P4n+3) -4 đồng dư với 1\(\times\)(1+3) -4 = 0 ( mod3) hay A chia hết cho 5

Bài 5

Ta xét :

Nếu p =3 thì dễ thấy 4P+1=9 là hợp số (1)

Nếu p\(\ne\)3 ; vì 2p+1 là số nguyên tố nên p không thể chia 3 dư 1 ( vì nếu p chia 3 duw1 thì 2p+1 chia hết cho 3 và 2p+1 lớn hơn 3 nên sẽ là hợp số trái với đề bài)

suy ra p có dạng 3k+2 ; 4p+1=4(3k+2)+1=12k+9 chia hết cho 3 và 4p+1 lớn hơn 3 nên là 1 hợp số (2)

Từ (1) và (2) suy ra 4p+1 là hợp số 

6 tháng 11 2016

Do p nguyên tố > 3 nên p không chia hết cho 3 => p2 không chia hết cho 3

Mà p2 chia 3 chỉ có thể dư 0 hoặc 1 => p2 chia 3 dư 1

Lí luận tương tự với q2 từ đó => p2 - q2 chia hết cho 3 (1)

Do p nguyên tố > 3 nên p lẻ => p2 lẻ

Mà p2 chia 8 chỉ có thể dư 0; 1 hoặc 4 => p2 chia 8 dư 1

Lí luận tương tự với q2 từ đó => p2 - q2 chia hết cho 8 (2)

Từ (1) và (2), mà (3;8)=1 => p2 - q2 chia hết cho 24 (đpcm)

28 tháng 3 2020

bạn nào trả lời được thì cho mình nha