\(\in\) N* thì \(4^{n+3}+4^{n+2}-4^{n+1}-4^n\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2017

a, Ta có : 8.2n + 1n + 1 

= 8.2n + 1 (vì 1n + 1 lúc nào cũng bằng 1)

= 23 + n . 1

Mà 23 + n luôn luôn ko chia hết cho10

Nên 8.2n + 1n + 1  ko chi hết cho10

15 tháng 3 2017

bằng niềm tin

15 tháng 3 2017

4\(^{n+3}\)+ 4\(^{n+2}\)- 4\(^{n+1}\)- 4\(^n\)=4\(^3\).4\(^n\)+ 4\(^2\).4\(^n\)- 4 . 4\(^n\)-4\(^n\)

= 64 . 4\(^n\) + 16 . 4\(^n\)- 4 . 4\(^n\)- 1 . 4\(^n\)

= 75 . 4\(^n\) = 75 . 4\(^n\) = 75 . 4 . 4\(^{n-1}\)

= 300 . 4\(^{n-1}\)chia het cho 300

24 tháng 11 2017

\(A=4^{n-1}\left(4+4^2+4^3\right)+4^{n+3}\left(4+4^2+4^3\right)+...+4^{n+17}\left(4+4^2+4^3\right)\)

\(\Rightarrow A=4^{n-1}\times84+4^{n+3}\times84+...+4^{n+17}\times84\)

\(\Rightarrow A=84\left(4^{n-1}+4^{n+3}+...+4^{n+17}\right)⋮84\)

Vậy \(A⋮84\) 

24 tháng 11 2017

Yêu cầu bài này là gì vậy bạn ơi ?

3 tháng 10 2017

Giúp mình nha!

Mai mình nộp rồi.

2 tháng 4 2017

Mình bổ sung thêm cho đề bài 2 là CMR với n thuộc N*

23 tháng 6 2015

Bài 1 : \(3^{n+2}\)\(-2^{n+2}\)\(3^n-2^n\)\(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

 = \(3^n\)\(\left(3^2+1\right)\) \(-2^n\left(2^2+1\right)\)\(3^n\times10-2^{n-1}\times10\)

= 10 \(\times\left(3^n+2^{n+1}\right)\)

chia hết cho 10

Bài 2 : 

\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\) =\(75+25+75.4.\left(4^{2003}+4^{2003}+....+4^2+4\right)\)

\(100+300.\left(4^{2003}+4^{2003}+...+4^2+4\right)\)

chia het cho 100

12 tháng 4 2018

ehdhfhdfh

27 tháng 9 2016

2.32_>2>8

=>2.25_>2n>23

=>26_>2n>23

=>n{6;5;4}

15 tháng 7 2017

8<n^n<2.32