K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

A=a^3/24+a^2/8+a/12 
= (a^3+ 3 a^2+ 2) /24 = a(a+1)(a+2)/24 
ta cần CM a(a+1)(a+2) chia hết cho 24 
để dễ hiểu mình sẽ trình bày cụ thể, còn nếu muốn rút gọn thì b có thể tự trình bày lại nhá :D 
do a chắn => a=4k hoặc a=4k+2 (k thuộc Z) 
TH1: a=4k; a+2=4k+2 
=> a(a+1)(a+2) chia hết cho 4*2=8 
và trong 3 số a, a+1, a+2 có 1 số chia hết cho 3 mà (3;8)=1 
=> a(a+1)(a+2) chia hết cho 24 

TH2: a=4k+2, a+2= 4k+4 (k thuộc Z) 
=> a(a+1)(a+2) chia hết cho 4*2=8 
và trong 3 số a, a+1, a+2 có 1 số chia hết cho 3 mà (3;8)=1 
=> a(a+1)(a+2) chia hết cho 24 

vậy A=a^3/24+a^2/8+a/12 luôn có giá trị nguyên 

1 tháng 8 2016

1) Đặt a=2k vì a chẵn 
=>A = k^3/3+k^2/2+k/6 = (2k^3+3k^2+k)/6 
= (2(k-1)k(k+1) + 3k(k+1))/6 
=(k-1)k(k+1)/3 + k(k+1)/2 
(k-1)k(k+1) là tích của ba số nguyên liên tiếp nên chia hết cho 3 =>(k-1)k(k+1)/3 nguyên 
k(k+1) là tích của hai số nguyên liên tiếp nên chia hết cho 2 =>k(k+1)/2 nguyên 
=>A nguyên

24 tháng 7 2017

ta cóA=\(\frac{n}{12}+\frac{n^2}{8}+\frac{n^3}{24}\)=\(\frac{2n+3n^2+n^3}{24}=\frac{n\left(n^2+3n+2\right)}{24}\)=\(\frac{n\left(n^2+n+2n+2\right)}{24}=\frac{n\left[n\left(n+1\right)+2\left(n+1\right)\right]}{24}\)

=\(\frac{n\left(n+1\right)\left(n+2\right)}{24}\)
n là số chẵn=> n có dạng 2k
ta có: A=\(\frac{2k\left(2k+1\right)\left(2k+2\right)}{24}=\frac{8k^3+12k^2+4k}{24}\)

=\(\frac{2k^3+3k^2+k}{12}=\frac{2k^3+2k^2+k^2+k}{12}=\frac{k\left(k+1\right)\left(k+2\right)}{12}\)

ta có tích 3 số tự nhiên liên tiếp chia hết cho 12=> A nguyên với mọi n là số chẵn

9 tháng 10 2019

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

18 tháng 7 2017

Ta có: A =n^12-n^8-n^4+1 
=(n^8-1)(n^4-1)=(n^4+1)(n^4-1)^2 
=(n^4+1)[(n^2+1)(n^2-1)]^2 
=(n-1)^2*(n+1)^2*(n^2+1)^2*(n^4+1) 
Ta có n-1 và n+1 là 2 số chẵn liên tiếp nên có 1 số chỉ chia hết cho 2 ,1 số chia hết cho 4 nên (n-1)(n+1) chia hết cho 8 => (n-1)^2*(n+1)^2 chia hết cho 64 
Mặt khác n lẻ nên n^2+1,n^4+1 cũng là số chẵn nên (n^2+1)^2*(n^4+1) chia hết cho 2^3=8 
Do đó : A chia hết cho 64*8=512

18 tháng 7 2017

a, Ta có m là số nguyên chẵn

=> m có dạng 2k 

=> m3+20m=(2k)3+20.2k

=8k3+40k=8k(k2+5)

Cần chứng minh k(k2+5) chia hết cho 6

Nếu k chẵn => k(k2+5) chia hết cho 2

Nếu k lẻ =>k2 lẻ=> k2+5 chẵn=> k(k2+5) chia hết cho 2

Nếu k chia hết cho 3 thì k(k2+5) chia hết cho 3

Nếu k chia 3 dư 1 hoặc dư 2 thì 

k có dạng 3k+1 hoặc 3k+2

=> (3k+1)[(3k+1)2+5)]

=(3k+1)(9k2+6k+6) Vì 9k2+6k+6 chia hết cho 3 

=> k(k2+5) chia hết cho 3

Nếu  k chia 3 dư 2 

=> k có dạng 3k +2

=> k(k2+5)=(3k+2)[(3k+2)2+5]

=(3k+2)(9k2+12k+9)

Vì 9k2+12k +9 chia hết cho 3

=> k(k^2+5) chia hết cho 3

=> k(k2+5) chia hết cho 6

=> 8k(k2+5) chia hết cho 48

=> dpcm

DD
17 tháng 6 2021

\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)

\(5\left(n^2+n+2\right)⋮5\)

21 tháng 7 2017

a) Ta có :  (n + 2)- (n - 2)2 
= [(n + 2) + (n - 2)][(n + 2) - (n - 2)] (áp dụng hang đẳng thức a2 - b2 = (a + b) (a - b)

= 2n.4 

= 8n 

Mà n là số tự nhiên => 8n chia hết cho 8

Vậy (n + 2)- (n - 2)2 chia hết cho 8

Ta có : (n + 7)2 - (n - 5)2 

= [(n + 7) + (n - 5)][(n + 7) - (n - 5]

= (2n + 2).12

= 2(n + 1).12

= 24(n + 1)

Mà n là số nguyên => 24(n + 1) chia hết cho 24

Vậy (n + 7)2 - (n - 5)2 chia hết cho 24 

14 tháng 5 2019

bạn đặt n = 3k . q ( ( q,3)=1) 

rồi xét thấy A sẽ chia hết cho 3 nếu q khác 1 

27 tháng 9 2023

ai giải dùm bài này với, giải mãi không ra, thanks

 

22 tháng 7 2015

(n+7)2-(n-5)2

=[(n+7)+(n-5)][(n+7)-(n-5)]

=(n+7+n-5)(n+7-n+5)

=(2n+2).12

=2.(n+1).12

=24.(n+1) 

Vậy với mọi số nguyên n thì: (n+7)2 _ (n-5)2 chia hết cho 24 

12 tháng 6 2024

(n+7)^2-(n-5)^2

=n^2+14n+7^2-n^2+10n-5^2

=24n+24

24(n+1) chia hết cho 24