Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em thử ạ!Em không chắc đâu.Hơi quá sức em rồi
Ta có: \(VT=\Sigma\frac{x^3}{z+y+yz+1}=\Sigma\frac{x^3}{z+y+\frac{1}{x}+1}\)
\(=\Sigma\frac{x^4}{xz+xy+1+x}=\frac{x^4}{xy+xz+x+1}+\frac{y^4}{yz+xy+y+1}+\frac{z^4}{zx+yz+z+1}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel,suy ra:
\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x+y+z\right)+2\left(xy+yz+zx\right)+3}\)
\(\ge\frac{\left(\frac{1}{3}\left(x+y+z\right)^2\right)^2}{\left(x+y+z\right)+\frac{2}{3}\left(x+y+z\right)^2+3}\) (áp dụng BĐT \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3};ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))
Đặt \(t=x+y+z\ge3\sqrt{xyz}=3\) Dấu "=" xảy ra khi x = y = z
Ta cần chứng minh: \(\frac{\frac{t^4}{9}}{\frac{2}{3}t^2+t+3}\ge\frac{3}{4}\Leftrightarrow\frac{t^4}{9\left(\frac{2}{3}t^2+t+3\right)}=\frac{t^4}{6t^2+9t+27}\ge\frac{3}{4}\)(\(t\ge3\))
Thật vậy,BĐT tương đương với: \(4t^4\ge18t^2+27t+81\)
\(\Leftrightarrow3t^4-18t^2-27t+t^4-81\ge0\)
Ta có: \(VT\ge3t^4-18t^2-27t+3^4-81\)
\(=3t^4-18t^2-27t\).Cần chứng minh\(3t^4-18t^2-27t\ge0\Leftrightarrow3t^4\ge18t^2+27t\)
Thật vậy,chia hai vế cho \(t\ge3\),ta cần chứng minh \(3t^3\ge18t+27\Leftrightarrow3t^3-18t-27\ge0\)
\(\Leftrightarrow3\left(t^3-27\right)-18\left(t-3\right)\ge0\)
\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+27\right)-18\left(t-3\right)\ge0\)
\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+9\right)\ge0\)
BĐT hiển nhiên đúng,do \(t\ge3\) và \(3t^2+9t+9=3\left(t+\frac{3}{2}\right)^2+\frac{9}{4}\ge\frac{9}{4}>0\)
Dấu "=" xảy ra khi t = 3 tức là \(\hept{\begin{cases}x=y=z\\xyz=1\end{cases}}\Leftrightarrow x=y=z=1\)
Chứng minh hoàn tất
Em sửa chút cho bài làm ngắn gọn hơn.
Khúc chứng minh: \(4t^4\ge18t^2+27t+81\)
\(\Leftrightarrow4t^4-18t^2-27t-81\ge0\)
\(\Leftrightarrow\left(t-3\right)\left(4t^3+12t^2+18t+27\right)\ge0\)
BĐT hiển nhiên đúng do \(t\ge3\Rightarrow\hept{\begin{cases}t-3\ge0\\4t^3+12t^2+18t+27>0\end{cases}}\)
Còn khúc sau y chang :P Lúc làm rối quá nên không nghĩ ra ạ!
1111111111111111111
\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)
Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)
Là xong.
Ta có:
\(\dfrac{1}{\left(x-1\right)^3}+1+1+\left(\dfrac{x-1}{y}\right)^3+1+1+\dfrac{1}{y^3}+1+1\)
\(\ge3\left(\dfrac{1}{x-1}+\dfrac{x-1}{y}+\dfrac{1}{y}\right)\)
\(\Rightarrow\dfrac{1}{\left(x-1\right)^3}+\left(\dfrac{x-1}{y}\right)^3+\dfrac{1}{y^3}\ge3\left(\dfrac{1}{x-1}+\dfrac{x-1}{y}+\dfrac{1}{y}-2\right)\)
\(=3\left(\dfrac{3-2x}{x-1}+\dfrac{x}{y}\right)\)
Áp dụng BĐT AM-GM ta có:
\(\left(\frac{12}{5}\right)^x+\left(\frac{15}{4}\right)^x\ge2\sqrt{9^x}=2\cdot3^x\)
\(\left(\frac{15}{4}\right)^x+\left(\frac{20}{3}\right)^x\ge2\sqrt{25^x}=2\cdot5^x\)
\(\left(\frac{20}{3}\right)^x+\left(\frac{12}{5}\right)^x\ge2\sqrt{16^x}=2\cdot4^x\)
Cộng theo vế ta có: \(2VT\ge2VP\Leftrightarrow VT\ge VP\)
kết bạn với mình nhé!$$$$$