Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x5y-xy5=xy(x4-y4)=xy(x2-y2)(x2+y2)
=xy(x-y)(x+y)(x2+y2)
Ta cần cm bt trên chia hết cho 2,3 và 5
Nếu x,y cùng tính chẵn lẻ thì x-y chẵn=> x5y-xy5 chia hết cho 2 (1)
Nếu x,y không cùng tính chẵn lẻ thi x+y chẵn=>2 (2)
Từ (1) và (2)=> x5y-xy5 chia hết cho 2 với mọi x,y nguyên (13)
Nếu x hoặc y chia hết cho 3=>x5y-xy5 chia hết cho 3 (3)
Nếu x và y chia 3 có cùng số dư thì x-y chia hết cho 3=>x5y-xy5 chia hết cho 3 (4)
Nếu x,y chia 3 không cùng số dư thi x+y chia hết cho 3=>x5y-xy5 chia hết cho 3 (5)
Từ (3),(4) và (5)=>x5y-xy5 chia hết cho 3 với mọi x,y nguyên (14)
Nếu x hoặc y chia hết cho 5 thì x5y-xy5 chia hết cho 5 (6)
Nếu x chia 5 dư 1, y chia 5 dư 2 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (7)
Nếu x chia 5 dư 2, y chia 5 dư 3
và ngược lại thì x+y chia hết cho 5
=>x5y-xy5 chia hết cho 5 (8)
Nếu x chia 5 dư 3, y chia 5 dư 4 và ngược lại thì
x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (9)
Nếu x chia 5 dư 1, y chia 5 dư 4 và ngược lại thì x+y chia hết cho 5
=>x5y-xy5 chia hết cho 5 (10)
Nếu x chia 5 dư 1, y chia 5 dư 3 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (11)
Nếu x chia 5 dư 2, y chia 5 dư 4 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (12)
Từ (6),(7),(8),(9),(10),(11)và (12)
=> x5y-xy5 chia hết cho 5 với mọi x,y nguyên (15)
Từ (13),(14) và (15) Mà (3;4;5)=1
=>x5y-xy5 chia hết cho 30 với mọi x,y nguyên
=>đpcm
Bài 1:
x5y-xy5=xy(x4-y4)=xy(x4-1+y4+1)
=xy(x4-1)-xy(y4-1)=xy(x2-1)(x2+1)-xy(y2-1)(y2+1)
=xy(x-1)(x+1)(x2+1)-xy(y-1)(y+1)(y2-1)
Mà:xy(x-1)(x+1)(x2+1) chia hết 2;3;5
=>xy(x-1)(x+1)(x2+1) chia hết cho 30
Cmtt:xy(y-1)(y+1)(y2+1) chia hết cho 30
Nên x5y-xy5 chia hết cho 30
Bài 2:
x2+y2+z2=y(x+z)
<=>x2+y2+z2-yx-yz=0
<=>2x2+2y2+2z2-2yx-2yz=0
<=>(x – y)2 + (y – z)2 + x2 + z2 = 0
<=>x – y = y – z = x = z = 0
<=>x=y=z=0
a) x(x² + x) + x(x + 1)
= x²(x + 1) + x(x + 1)
= (x + 1)(x² + x)
= x(x + 1)² ⋮ (x + 1)
b) xy² - yx² + xy
= xy(y - x + 1) ⋮ xy
\(A=x^5y-xy^5=xy\left(x^4-y^4\right)=xy\left(x^2-y^2\right)\left(x^2+y^2\right)=xy\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(A=xy\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
Thây vì c/m A chia hết cho 30 ta chia nhỏ 30 =2.3.5
1)c/m A chia hết cho
1.1)nếu x hoặc y chẵn hiển nhiên
1.2 x và y lẻ => x-y phải chẵn {tổng đại số hai số lẻ là số chẵn}
=> A chia hết cho 2
2)c/m A chia hết cho 3
2.1)nếu x hoặc y =3k hiển nhiên
2.2 x=3k+1 và y=3t+1 => (x-y)=3(k-t) hiển nhiên chia hết cho 3
2.3 x=3k+1 và y=3t+2 => (x+y) =3(k+t+1) hiển nhiên chia hết cho 3
x,y vai trò như nhau => A chia hết cho 3 (**)
3)
c/m A chia hết cho 5
3.1)nếu x hoặc y =5k hiển nhiên
3.2 x=5k+1 và y=5t+1 => (x-y)=5(k-t) hiển nhiên chia hết cho 5
3.3 x=5k+1 và y=5t+2 => (x^2+y^2) =5(5k^2+5t^2+2k+2t+1) hiển nhiên chia hết cho 5
3.4 x=5k+1 và y=5t+3 => (x^2+y^2) =5(5k^2+5t^2+2k+2t+2) hiển nhiên chia hết cho 5
3.5 x=5k+1 và y=5t+4 => (x^2-y^2) =5(5k^2-5t^2-2k+2t-3) hiển nhiên chia hết cho 5
x,y vai trò như nhau các trường hợp khác tương tự => A chia hết cho 5 (**)
Kết luận
A chia hết cho 2,3,5 mà 2,3,5, nguyên tố => A chia hết cho 2.3.5 =30=> dpcm
p/s: có thể phân tích tiếp A --> biện luận luôn cho dài => trông bài cho hoàng tráng
Lời giải:
$P=xy(x^4-y^4)-30xy^2$
Khi đó muốn cm $P\vdots 30$ thì ta chỉ cần chỉ ra $xy(x^4-y^4)\vdots 30$ với mọi $x,y$ nguyên.
Nếu $x,y$ cùng tính chẵn lẻ thì $x^4, y^4$ cũng cùng tính chẵn lẻ.
$\Rightarrow x^4-y^4$ chẵn
$\Rightarrow xy(x^4-y^4)\vdots 2$
Nếu $x,y$ khác tính chẵn lẻ, nghĩa là 1 trong 2 số là số chẵn.
$\Rightarrow xy\vdots 2\Rightarrow xy(x^4-y^4)\vdots 2$
Vậy $xy(x^4-y^4)\vdots 2(*)$
--------------------------------------
Mặt khác:
Nếu 1 trong 2 số $x,y\vdots 5$ thì hiển nhiên $xy(x^4-y^4)\vdots 5$
Nếu $x,y$ đều không chia hết cho 5 thì $x^2, y^2$ cũng không chia hết cho $5$.
Mà 1 scp khi chia cho 5 dư $0,1,4$ nên lúc này $x^2, y^2$ chia 5 dư $1$ hoặc $4$
$xy(x^4-y^4)=xy(x^2-y^2)(x^2+y^2)$.
$x^2, y^2$ mà cùng chia 5 dư $1$ hoặc cùng chia $5$ dư $4$ thì $x^2-y^2\vdots 5\Rightarrow xy(x^4-y^4)=xy(x^2-y^2)(x^2+y^2)\vdots 5$
$x^2, y^2$ mà chia 5 khác số dư thì 1 số chia 5 dư 1, một số chia 5 dư 4 nên $x^2+y^2\vdots 5$
$\Rightarrow xy(x^4-y^4)=xy(x^2-y^2)(x^2+y^2)\vdots 5$
Vậy tóm lại $xy(x^4-y^4)\vdots 5(**)$
-----------------
Nếu 1 trong 2 số $x,y$ chia hết cho 3 thì hiển nhiên $xy(x^4-y^4)\vdots 3$
Nếu cả 2 số $x,y$ đều không chia hết cho 3 thì $x^2, y^2$ chia 3 dư 1 (tính chất scp)
$\Rightarrow x^2-y^2\vdots 3$
$\Rightarrow xy(x^4-y^4)=xy(x^2-y^2)(x^2+y^2)\vdots 3 (***)$
Từ $(*); (**); (***)\Rightarrow xy(x^4-y^4)\vdots (2.3.5)$
Hay $xy(x^4-y^4)\vdots 30$
$\Rightarrow P\vdots 30$
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
\(x^5y-xy^5=xy\left(x^4-y^4\right)\)
\(=xy\left(x^4-1+1-y^2\right)\)
\(=xy\left(x^4-1\right)-xy\left(y^4-1\right)\)
\(=xy\left(x^2-1\right)\left(x^2+1\right)-xy\left(y^2-1\right)\left(y^2+1\right)\)
\(=xy\left(x-1\right)\left(x+1\right)\left(x^2+1\right)-xy\left(y-1\right)\left(y+1\right)\left(y^2+1\right)\)
Xét \(xy\left(x-1\right)\left(x+1\right)\left(x^2+1\right)=xy\left(x-1\right)\left(x+1\right)\left(x^2-4+5\right)\)
\(=xy\left(x-1\right)\left(x+1\right)\left(x^2-4\right)+5xy\left(x-1\right)\left(x+1\right)\)
\(=y.\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)+5y\left(x-1\right)x\left(x+1\right)\)
Do x-2 ; x-1 ; x ; x+1 ; x+2 là 5 số liên tiếp
\(\Rightarrow\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮2;3;5\)
Mà (2;;3;5) = 1
\(\Rightarrow\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮\left(2.3.5=30\right)\)
\(\Rightarrow y\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮30\)
Lại có \(5\left(x-1\right)x\left(x+1\right)⋮2;3;5\Rightarrow5\left(x-1\right)x\left(x+1\right)⋮30\)
\(\Rightarrow5y\left(x-1\right)x\left(x+1\right)⋮30\)
Do đó \(y\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)-5y\left(x-1\right)x\left(x+1\right)⋮30\)
\(\Rightarrow xy\left(x-1\right)\left(x+1\right)\left(x^2+1\right)⋮30\)
Tương tự \(xy\left(y-1\right)\left(y+1\right)\left(y^2+1\right)⋮30\)
\(\Rightarrow xy\left(x-1\right)\left(x+1\right)\left(x^2+1\right)-xy\left(y-1\right)\left(y+1\right)\left(y^2+1\right)⋮30\)
\(\Rightarrow x^5y-xy^5⋮30\)