K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2019

                        Giải

Ta có:n5 - n = n(n4 - 1)

= n(n2 - 1)(n2 - 4 + 5)

= n(n2 - 1)(n2 - 4) + 5n(n2 - 1)

= (n - 2)(n - 1)n(n + 1)(n + 2) + 5(n - 1)n(n + 1)

Ta thấy (n - 2)(n - 1)n(n + 1)(n + 2) là 5 số tự nhiên liên tiếp nên sẽ đồng thời chia hết cho 2 và cho 5. Hay là (n - 2)(n - 1)n(n + 1)(n + 2) sẽ chia hết cho 10 (1)

Ta lại co (n - 1)n(n + 1) là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 2

=> 5(n - 1)n(n + 1) chia hết cho 10 (2)

Từ (1) và (2) => n5 - n chia hết cho 10 hay là co tận cùng là 0.

Vậy n5 và n luôn có chữ số tận cùng giống nhau.\(\left(đpcm\right)\)

13 tháng 10 2015

tui cx đang nghĩ bài này, trùng hợp quá,mai tui học, lm cho

17 tháng 9 2018

\(n^5-n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)⋮10\)

\(\Rightarrow n^5,n\) co chữ xô tận cùng giông nhau

2 tháng 1 2017

Đề sai rồi nhé. 82n-1 thì nếu n = 0 thì A là số thập phân sao chia hết cho 59 được. M sửa đề luôn nhé.

\(A=5^{n+2}+26.5^n+8^{2n+1}\)

\(=25.5^n+26.5^n+8.64^n\)

\(=5^n\left(25+26\right)+8.64^n\)

\(=5^n\left(59-8\right)+8.64^n\)

\(=59.5^n+8\left(64^n-5^n\right)\)

\(=59.5^n+8.\left(64-5\right)\left(64^{n-1}+64^{n-2}.5...\right)\)

\(=59.5^n+8.59.\left(64^{n-1}+64^{n-2}.5...\right)\)

Vậy A chia hết cho 59 với mọi n tự nhiên

2 tháng 1 2017

Đề sai rồi nhé. 82n-1 thì nếu n = 0 thì A là số thập phân sao chia hết cho 59 được. M sửa đề luôn nhé.

\(A=5^{n+2}+26.5^n+8^{2n+1}\)

\(=25.5^n+26.5^n+8.64^n\)

\(=5^n\left(25+26\right)+8.64^n\)

\(=5^n\left(59-8\right)+8.64^n\)

\(=59.5^n+8\left(64^n-5^n\right)\)

\(=59.5^n+8.\left(64-5\right)\left(64^{n-1}+64^{n-2}.5...\right)\)

\(=59.5^n+8.59.\left(64^{n-1}+64^{n-2}.5...\right)\)

Vậy A chia hết cho 59 với mọi n tự nhiên

29 tháng 11 2017

a, Xét : n^5-n = n.(n^4-1)=n.(n^2-1).(n^2+1) = n.(n-1).(n+1).(n^2-4+5) = n.(n-1).(n+1).(n-2).(n+2) + 5.(n-1).n(n+1)

Ta thấy n-2;n-1;n-n+1;n+2 là 5 số nguyên liên tiếp nên có  1 số chia hết cho 2 và 1 số chia hết cho 5

=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 2.5 = 10 ( vì 2 và 5 là 2 số nguyên tố cùng nhau )

Lại có : n-1 và n là 2 số nguyên liên tiếp nên có 1 số chia hết cho 2 => 5.(n-1).n.(n+1) chia hết cho 10

=> n^5-n chia hết cho 10 => n^5-n có tận cùng là 0

=> n^5 và n có chữ số tận cùng bằng nhau

k mk nha

26 tháng 1 2016

kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh

26 tháng 1 2016

de sai phai la 25n4