Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Ta có: \(405^n=......5\)
\(2^{405}=2^{404}\cdot2=\left(.......6\right)\cdot2=.......2\)
\(m^2\) là số chính phương nên có chữ số tận cùng khác 3. Vậy A có chữ số tận cùng khác 0 \(\Rightarrow A⋮10\)
b.
\(B=\frac{2n+9}{n+2}+\frac{5}{n+2}\frac{n+17}{ }-\frac{3n}{n+2}=\frac{2n+9+5n+17-3n}{n+2}=\frac{4n+26}{n+2}\)
\(B=\frac{4n+26}{n+2}=\frac{4\left(n+2\right)+18}{n+2}=4+\frac{18}{n+2}\)
Để B là số tự nhiên thì \(\frac{18}{n+2}\) là số tự nhiên
\(\Rightarrow18⋮\left(n+2\right)\Rightarrow n+2\inư\left(18\right)=\left\{1;2;3;6;9;18\right\}\)
+ \(n+2=1\Leftrightarrow n=-1\) ( loại )
+ \(n+2=2\Leftrightarrow n=0\)
+ \(n+2=3\Leftrightarrow n=1\)
+ \(n+2=6\Leftrightarrow n=4\)
+ \(n+2=9\Leftrightarrow n=7\)
+ \(n+2=18\Leftrightarrow n=16\)
Vậy \(n\in\left\{0;1;4;7;16\right\}\) thì \(B\in N\)
c.
Ta có \(55=5\cdot11\) mà \(\left(5;1\right)=1\)
Do đó \(C=\overline{x1995y}⋮55\)\(\Leftrightarrow\)\(\begin{cases}C⋮5\\C⋮11\end{cases}\) \(\frac{\left(1\right)}{\left(2\right)}\)
\(\left(1\right)\Rightarrow y=0\) hoặc \(y=5\)
+ \(y=0\div\left(2\right)\Rightarrow x+9+5-\left(1+9+0\right)⋮11\Rightarrow x=7\)
+ \(y=5\div\left(2\right)\Rightarrow x+9+5-\left(1+9+5\right)⋮11\Rightarrow x=1\)
Đặt A=:405^n +2^405+m^2
=(...5)+2^4.101+1+m^2
=(...5)+(...2)+m^2
=(...7)+m^2
Vì m^2 là số chính phương, mà số chính phương không có tận cùng là 3=>(...7)+m^2 không có tận cùng là 0=>A không có tận cùng là 0=>A không chia hết cho 10
bài1
vì 148 chia ht cho 7 và 111 chia ko chia ht cho 7 => a ko chia ht cho 7
bài 1 :
ta có : a= 148 . q + 111
a= 37.4.q+(37.3)
a = 37 . ( 4.q + 3 ) chia hết cho 37
vậy a chia hết cho 37
A = 81360384 - 77986545 = 3373839
Vì hiệu A có tận cùng là 9 nên không chia hết cho 10
B = 405n + 2205 + m2
405n có tận cùng là 5
2205 có tận cùng là 2
Đặt giả thuyết B chia hết cho 10 thì
...5 + ...2 + m2 = ...10
=> m2 có tận cùng là 3 .
Bình phương của một số không bao giờ có tận cùng là 3 .
Vậy B không chia hết cho 10
\(A=405^n+2^{405}+17^{37}\left(n\in N\right)\)
\(\Rightarrow A=\overline{.....5}+2^{4.101}.2+17^{4.9}.17\)
\(\Rightarrow A=\overline{.....5}+\overline{.....6}.2+\overline{.....1}.17\)
\(\Rightarrow A=\overline{.....5}+\overline{.....2}+\overline{.....7}\)
\(\Rightarrow A=\overline{......4}\)
Vì chữ số tận cùng của \(A\) là \(4\)
Nên \(A=405^n+2^{405}+17^{37}\) không chia hết cho \(10\)
\(\Rightarrow dpcm\)
đúng ko vậy >:[]