Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n^5-n=n(n^4-1)=n(n²-1)(n²-4+5)
=(n-2)(n-1)n(n+1)(n+2)+5(n-1)n(n+1) (a)
*Vì (n-2)(n-1)n(n+1)(n+2) là tíc 5 số tự nhiên ltiếp nên chia hết cho 2,5 nên chia hết cho 10
( vì (2,5)=1) (b)
*Vì (n-1)n(n+1) là tích 3 số nguyên ltiếp nên chia hết cho 2 =>5(n-1)n(n+1) chia hết cho 10 (c)
Từ (a),(b),(c)=>n^5-n chia hết cho 10 nên n^5 và n có cùng dư khi chia cho 10
Đặt dư là r(r thuộc N,0≤r≤9) ta có:n^5=10k+r,n=10h+r đều có tận cùng là r (đpcm)
k mk đi
A = n^5 - n = n(n^4-1) = n(n^2 +1)(n^2 -1) =n(n^2 +1)(n+1)(n-1)
* n(n +1) chia hết cho 2 => A chia hết cho 2.
*cm: A chia hết cho 5.
n chia hết cho 5 => A chia hết cho 5.
n không chia hết cho 5 => n = 5k + r (với r =1,2,3,4)
- r = 1 => n - 1 = 5k chia hết cho 5 => A chia hết cho 5
- r = 2 => n^2 + 1 = 25k^2 + 20k + 5 chia hết cho 5 => A chia hết cho 5
- r = 3 => n^2 + 1 = 25k^2 + 30k + 10 chia hết cho 5 => A chia hết cho 5
- r = 4 => n +1 = 5k + 5 chia hết cho 5 => A chia hết cho 5
=> A luôn chia hết cho 5
2,5 nguyên tố cùng nhau => A chia hết cho 2.5=10 => A tận cùng là 0
=>đpcm
+)Gọi d là ƯCLN(n,22n+1)
\(\Rightarrow n⋮d;22n+1⋮d\)
\(n⋮d\)
\(\Rightarrow22n⋮d\)(1)
\(22n+1⋮d\)(2)
+)Từ (1) và (2)
\(\Rightarrow22n+1-22n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=1\)
=>d=1
\(\RightarrowƯCLN\left(n,22n+1\right)=1\)
=>n và 22n+1 nguyên tố cùng nhau với mọi n nguyên dương
Chúc bn học tốt
Ta có: a= a
a5=a.a.a.a.a
=> a và a5 có chữ số tận cùng là a
=> đpcm
x+y=a+b => (x+y)2 =(a+b)2 => x2 +2xy+ y2 =a2 +2ab+b2 => xy=ab
ta sẽ chứng mính bằng phương pháp quy nạp.
Với n =1, n=2 thì đẳng thức đúng
Giả sử xn-1 +yn-1 = an-1 +bn-1; xn +yn = an +bn , ta sẽ chứng minh đẳng thức cũng đúng với n+1
\(x^{n+1}+y^{n+1}=\left(x^n+y^n\right)\left(x+y\right)-xy\left(x^{n-1}+y^{n-1}\right)=\left(a^n+b^n\right)\left(a+b\right)-\)ab(an-1 +bn-1 ) = an+1 + bn+1 (đúng)
vậy đẳng thức đúng với mọi n
+) Ta có : \(x^2+y^2=a^2+b^2\)
\(\Leftrightarrow x^2-a^2=b^2-y^2\)
\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\) ( * )
+) Ta có : \(x+y=a+b\)
\(\Leftrightarrow x-a=b-y\)
Thay \(x-a=b-y\) vào ( * ) ta được :
\(\left(b-y\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\)
\(\Leftrightarrow\left(b-y\right)\left(x+a\right)-\left(b-y\right)\left(b+y\right)=0\)
\(\Leftrightarrow\left(b-y\right)\left[\left(x+a\right)-\left(b+y\right)\right]=0\)
\(\Leftrightarrow\left(b-y\right)\left(x+a-b-y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}b-y=0\\x+a-b-y=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}b=y\\x+a=b+y\end{cases}}\)
TH1 :\(b=y\)
\(\Rightarrow b-y=0\)
\(\Rightarrow x-a=0\)
\(\Rightarrow x=a\)
\(\Rightarrow x^n+y^n=a^n+b^n\) ( 1 )
TH2 : \(x+a=b+y\)
Mà \(x-a=b-y\)
\(\Rightarrow x+a+x-a=b+y+b-y\)
\(\Rightarrow2x=2b\)
\(\Rightarrow x=b\)
\(\Rightarrow a=y\)
\(\Rightarrow x^n+y^n=a^n+b^n\) ( 2 )
Từ ( 1 ) ; ( 2 )
\(\Rightarrow\) đpcm
Bài 2 :
Ta có: (10a + 5)2 = (10a)2 + 2 .10a . 5 + 52
= 100a2 + 100a + 25
= 100a(a + 1) + 25.
Cách tính nhẩm bình thường của một số tận cùng bằng chữ số 5;
Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được
(10a + 5)2 = 100a(a + 1) + 25
Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.
Áp dụng;
- Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.
- Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.
- 652 = 4225
- 752 = 5625.
Bài 4 :
a) 342 + 662 + 68 . 66 = 342 + 2 . 34 . 66 + 662 = (34 + 66)2 = 1002 = 10000.
b) 742 + 242 – 48 . 74 = 742 - 2 . 74 . 24 + 242 = (74 - 24)2
=502 =2500
Sử dụng phép đồng dư nhá bạn.
\(7\equiv7\)(mod 100)
\(7^3\equiv43\)(mod 10)
\(7^4=1\)(mod 10)
\(\left(7^4\right)^{10}\equiv1^{10}=1\) (mod 10)
\(7^{40}.7^3\equiv1.43\equiv43\) (mod10)
Vậy .....................................
ta có: 7^34=7^4.10+3=7^4.10 .7^3=(7^4)^10 .7^3=2401^10 .343=...01.343=...43
=> dpcm
Bạn xét hệu cái 2 - cái 1,rồi phân tích thành nhân tử,được tích chứa 5 số tự nhiên liên tiếp chia hết cho 10=>đccm