K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2021

Là được (x-y-5)^2 + y^2 lớn hơn hoặc bằng 0 

Dấu bằng xảy ra khi x = 5 và y=0

Do đó x^2 - 2xy + 2y^2 - 10x + 10y + 25 lớn hơn hoặc bằng 0

Chúc bạn học tốt nhớ theo dõi mk vs nhé. Mk cảm ơn

9 tháng 8 2020

\(Tacó\):   \(C=x^2+2xy+y^2+y^2-6y+15\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+6\)

\(=\left(x+y\right)^2+\left(y-3\right)^2+6\)

\(Mà\)\(\left(x+y\right)^2\ge0\)với mọi x,y

             \(\left(y-3\right)^2\ge0\)với mọi y

\(\Rightarrow\left(x+y\right)^2+\left(y-3\right)^2+6>0\)

\(Hay\)\(x^2+2xy+y^2+y^2-6y+15>0\)\

       

8 tháng 8 2020

Ta có C = (x2 + 2xy + y2) + (y2 - 6x + 9) + 6 

= (x + y)2 + (y - 3)2 + 6 \(\ge6>0\)(đpcm)

9 tháng 8 2020

C = x2 + 2xy + y2 + y2 - 6y + 15 

C = ( x2 + 2xy + y2 ) + ( y2 - 6y + 9 ) + 6

C = ( x + y )2 + ( y - 3 )2 + 6 ≥ 6 > 0 ∀ x ( đpcm )

D = x2 + y2 + 6x + 10y + 30

D = ( x2 + 6x + 9 ) + ( y2 + 10y + 25 ) - 4

D = ( x + 3 )2 + ( y + 5 )2 - 4 ≥ -4 ( xem lại đề nhớ )

7 tháng 12 2017

\(x^2+2y^2-2xy+2x-4y+3\)

\(=x^2+y^2+y^2-2xy+2x-2y-2y^2+1+1+1\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(2x-2y\right)+1+1\)

\(=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-1\right)^2+1\)

\(=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y-1\right)^2+1\)

\(=\left(x-y+1\right)^2+\left(y-1\right)^2+1\)

\(\left(x-y+1\right)^2+\left(y-1\right)^2\ge0\forall x;y\)

Nên \(\left(x-y+1\right)^2+\left(y-1\right)^2+1>0\forall x;y\)

Vậy \(x^2+2y^2-2xy+2x-4y+3>0\forall x;y\)

7 tháng 12 2017
Ta có: x2+2y2-2xy+2x-4y+3 = (x2 +y2 +1 - 2xy + 2x - 2y) + (y2-2y+1) +1 = (x-y+1)2 + (y-1)2 + 1 Vì (x-y+1)2 ≥ 0 với mọi x,y ∈ R (y-1)2 ≥ 0 với mọi y ∈ R ⇔ (x-y+1)2 + (y-1)2 ≥ 0 với mọi x,y ∈R ⇔ (x-y+1)2 + (y-1)2 +1 ≥ 1 > 0 với mọi x,y ∈R Vậy x2+2y2-2xy+2x-4y+3 > 0 với mọi x,y ∈ R.
12 tháng 8 2017

a, x^2 + xy + y^2 + 1 

= (x+y/4) ^2 + 3/4.y^2 + 1 >= 1 > 0

16 tháng 8 2017

b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3

= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1

= (x-3y)2 + (2x -1)2 + (y-1)2 +1

Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0

(2x -1)2 luôn lớn hơn hoặc bằng 0

(y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0

a)

\(x^2+xy+y^2+1=\left(x^2+2x\times\frac{y}{2}+\left(\frac{y}{2}\right)^2\right)+\frac{3y^2}{4}+1\)

\(=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge0+0+1=1\)

\(1>0\Rightarrow x^2+xy+y^2+1>0\)với mọi \(x\)\(y\)

b)

\(x^2+5y^2+2x-4xy-10y+14\)

\(=\left[x^2+2x\left(1-2y\right)+\left(1-2y\right)^2\right]+y^2-6y+13\)

\(=\left(x+1-2y\right)^2+\left(y^2-2y\times3+9\right)+4\)

\(=\left(x+1-2y\right)^2+\left(y-3\right)^2+4\)

Ta có:\(\left(x+1-2y\right)^2\ge0\)với mọi \(x;y\in R\)

\(\left(y-3\right)^2\ge0\)với mọi \(x;y\in R\)

\(\Rightarrow\left(x+1-2y\right)^2+\left(y-3\right)^2+4\ge4\)với mọi \(x;y\in R\)

\(\Rightarrow x^2+5y^2+2x-4xy-10y+14>0\)

c)

\(5x^2+10y^2-6xy-4x-2y+3=x^2+4x^2+y^2+9y^2-6xy-4x-2y+3\)

\(=\left[\left(2x\right)^2-2\times2x+1\right]+\left(y^2-2y+1\right)+\left[\left(3y\right)^2-2\times3y+x^2\right]+1\)

\(=\left(2x+1\right)^2+\left(y-1\right)^2+\left(3y-x\right)^2+1\)

Ta có \(\left(2x+1\right)^2\ge0\)với mọi  \(x\)

\(\left(y-1\right)^2\ge\)với mọi \(y\)

\(\left(3y-x\right)^2\ge0\)với mọi \(x;y\)

và \(1>0\)

\(\Rightarrow5x^2+10y^2-6xy-4x-2y+3>0\)

1 tháng 9 2017

a. \(x^2+xy+y^2+1=\left(x^2+xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2+1=\left(x+\frac{1}{4}y\right)^2+\frac{3}{4}y^2+1>0\forall x;y\)(đpcm)

b. \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left[\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1\right]+\left(y^2-6y+9\right)+4\)

\(=\left[\left(x-2y\right)^2-2\left(x-2y\right)+1\right]+\left(y^2-6y+9\right)+4\)

\(=\left(x-2y-1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)(đpcm)

c.  tương tự ý b

27 tháng 8 2020

\(A=x^2+2y^2-2xy+4x-6y+6\)

\(=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+\left(y^2-6y+9\right)-7\)

\(=\left(x-y\right)^2+\left(x+2\right)^2+\left(y-3\right)^2-7\)

Đề hình như có gì đó không đúng

27 tháng 8 2020

Ta có: \(A=x^2+2y^2-2xy+4x-6y+6=\left(x^2-2xy+y^2\right)\)          \(+4\left(x-y\right)+4+y^2-2y+1+1=\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]\)\(+\left(y-1\right)^2+1=\left(x-y+2\right)^2+\left(y-1\right)^2+1\)

Ta có: \(\left(x-y+2\right)^2\ge0\forall x,y\)\(\left(y-1\right)^2\ge0\forall y\)nên \(\left(x-y+2\right)^2+\left(y-1\right)^2+1>0\forall x,y\)

Vậy \(A=x^2+2y^2-2xy+4x-6y+6>0\forall x,y\)(đpcm)

1 tháng 12 2019

\(A=x^2+10y^2+2xy-6y+5\)

\(A=x^2+2xy+y^2+9y^2-6y+1+4\)

\(A=\left(x+y\right)^2+\left(3y+1\right)^2+4\)

Mà \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(3y+1\right)^2\ge0\\4>0\end{cases}}\)

=> A luôn dương với mọi x ; y

1 tháng 12 2019

\(B=x-x^2-1\)

\(B=-\left(x^2-x+1\right)\)

\(B=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)

\(B=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)

\(B=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Mà \(\hept{\begin{cases}-\left(x-\frac{1}{2}\right)^2\le0\\-\frac{3}{4}< 0\end{cases}}\)

=> B luôn âm với mọi x

3 tháng 7 2016

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)

ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)

Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)

T i c k cho mình 1 cái nha mới bị trừ 50 đ

23 tháng 10 2015

x^2+y^2+z^2+2x+2y+2z+3

=(x^2+2x+1)+(y^2+2y+1)+(z^2+2z+1)

=(x+1)^2+(y+1)^2+(z+1)^2 >=0

x^2+y^2+z^2+2x+2y+2z+3 >=0 với mọi số thực x,y,z