K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 6 2021

\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)

\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)

\(=5n^2+5n+10\)

\(=5\left(n^2+n+2\right)⋮5\) (đpcm)

DD
17 tháng 6 2021

\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)

\(5\left(n^2+n+2\right)⋮5\)

19 tháng 7 2018

bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...)  hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !

bạn hãy nhân đa thức với đa thức nhé !

Mình hướng dẫn bạn rồi đấy ! ok!

k nha !

19 tháng 7 2018

Ai đó làm ơn giúp tớ đi, rất gấp đó !!!!!!!

7 tháng 7 2018

Ta có: n(2n−3)−2n(n+1)n(2n−3)−2n(n+1) = 2n2−3n−2n2−2n2n2−3n−2n2−2n

−5n−5n

Vì −5⋮5−5⋮5 => -5n ⋮⋮ 5

=> n(2n−3)−2n(n+1)n(2n−3)−2n(n+1) ⋮⋮ 5 với mọi n ∈∈ Z

20 tháng 8 2017

Ta có:\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)=6n^2+31n+5-\left(6n^2+7n-5\right)\)

                                                                                           \(=38n+10\)

                                                                                              \(2\left(19n+5\right)⋮2\left(đpcm\right)\)

26 tháng 12 2017

https://goo.gl/BjYiDy

26 tháng 12 2017

sửa đề : \(\left(2n-1\right)^3-\left(2n-1\right)\)

đề đó mình nghĩ vậy

AH
Akai Haruma
Giáo viên
2 tháng 6 2024

1/

$A=n^3+3n^2-n-3=n^2(n+3)-(n+3)=(n^2-1)(n+3)$

$=(n-1)(n+1)(n+3)$

Do $n$ lẻ nên đặt $n=2k+1$ với $k$ tự nhiên. Khi đó:

$A=(2k+1-1)(2k+1+1)(2k+1+3)=2k(2k+2)(2k+4)$

$=8k(k+1)(k+2)$

Vì $k,k+1, k+2$ là 3 số tự nhiên liên tiếp nên trong đó có ít nhất 1 số chẵn, 1 số chia hết cho 3.

$\Rightarrow k(k+1)(k+2)\vdots 2, k(k+1)(k+2)\vdots 3$

$\Rightarrow k(k+1)(k+2)\vdots 6$ (do $(2,3)=1$)

$\Rightarrow A\vdots (8.6)$ hay $A\vdots 48$.

 

AH
Akai Haruma
Giáo viên
2 tháng 6 2024

2/

$B=n^{12}-n^8-n^4+1=(n^{12}-n^8)-(n^4-1)$

$=n^8(n^4-1)-(n^4-1)=(n^8-1)(n^4-1)$
$=(n^4-1)(n^4+1)(n^4-1)$

Đặt $n=2k+1$ với $k$ tự nhiên. Khi đó:

$(n^4-1)(n^4-1)=[(n-1)(n+1)(n^2+1)]^2$
$=[2k(2k+2)(4k^2+4k+2)]^2=[8k(k+1)(2k^2+2k+1)]^2$

Vì $k,k+1$ là 2 số tự nhiên liên tiếp nên $k(k+1)\vdots 2$

$\Rightarrow 8k(k+1)\vdots 16$

$\Rightarrow (n^4-1)(n^4-1)=[8k(k+1)(2k^2+2k+1)]^2\vdots 16^2=256$

Mà $n^4+1\vdots 2$ do $n$ lẻ.

$\Rightarrow (n^4-1)(n^4-1)(n^4+1)\vdots (2.256)$

Hay $B\vdots 512$