\(\left(n^2+n-1\right)^2\)chia hết cho...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2015

Ta có \(n^3+3n^2+2n=n(n^2+3n+2)=n(n+1)(n+2)\)  là tích ba số nguyên liên tiếp. Trong hai số liên tiếp luôn có một chia hết cho 2, trong ba số liên tiếp luôn có một chia hết cho 3. Vậy tích chia hết cho 6.

Ta có \((n^2+n-1)^2-1=(n^2+n-2)(n^2+n)=(n-1)(n+2)n(n+1)=(n-1)n(n+1)(n+2)\)  là tích bốn số nguyên liên tiếp.

Trong ba số liên tiếp luôn có một chia hết cho 3. Vậy tích chia hết cho 3. Mặt khác trong bốn số liên tiếp phải có hai số chẵn liên tiếp. Hai số chẵn liên tiếp phải có một số chia hết cho 4. Vậy tích sẽ chia hết cho 8. Từ hai điều đó suy ra tích chia hết 3x8=24.

 

11 tháng 11 2016

A = (x2+x-1)2-1 = ( x+ x -2 )( x+ x ) = x(x+1)( x2 -1 + x -1 ) = x.( x + 1 ).[ ( x ​- 1 ).( x + 1 ) + x - 1 ) 

= x.( x + 1 ).( x ​- 1 ).( x + 2 )      ( Tích 4 số liên tiếp )

Mà trong đó có tích 2 số chẵn liên tiếp <=> A chia hết cho 8

trong đó có tích 3 số  liên tiếp <=> A chia hết cho 3

 ( 3;8 ) = 1

=> A chia hết cho 8.3 = 24

5 tháng 7 2016

xem lại câu a nhé bạn

18 tháng 9 2018

d) ( n + 7 )2 - ( n - 5 )2

= n2 + 14n + 49 - n2 + 10n - 25

= 24n + 24

= 24 ( n + 1 ) chia hết cho 24 ( đpcm )

18 tháng 9 2018

e) 

( 7n + 5 )2 - 25

= ( 7n + 5 )2 - 52

= ( 7n + 5 - 5 ) ( 7n + 5 + 5 )

= 7n ( 7n + 10 ) chia hết cho 7 ( đpcm )

24 tháng 7 2019

undefined

16 tháng 11 2017

a)

n3+3n2+2n

= n3+ n2+2n2+2n

= n2(n+1) +2n(n+1)

= ( n+1)n(n+2)

Có n(n+1)(n+2) chia hết cho 6 vì là tích của 3 số nguyên liên tiếp

b)

(n2+n-1)2-1

= (n2+n-1-1)(n2+n-1+1)

= (n2+n-2)(n2+n)

= [ (n2-n) + (2n-2)] n (n+1)

= [ n(n-1) + 2(n-1)] n (n+1)

= n(n-1)(n+1)(n+2)

Có n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên chia hết cho 6

mà n(n-1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 và(n+1)(n+2) là tích 2 số nguyên liên tiếp nên chia hết cho 2

nên n(n-1)(n+1)(n+2) chia hết cho 4

\(\Rightarrow\) n(n-1)(n+1)(n+2) chia hết cho 24

16 tháng 11 2017

a) n3+3n2+2n

=n(n2+3n+2)

=n(n2+2n+n+2)

=n[(n2+2n)+(n+2)]

=n[n(n+2)+(n+2)]

=n(n+2)(n+1) ⋮6 (3 số nguyên liên tiến nhân với nhau ⋮6) (đpcm)

30 tháng 9 2018

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2+2n\right)\)

\(=\left(n+1\right)n\left(n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

vì tích của 3 số tự nhiên liên tiếp chia hết cho 6

Mặt khác n và n+1 và n+2 là 3 số tự nhiên liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\forall n\left(đpcm\right)\)

20 tháng 10 2019

a, (n+3)2-(n-1)2

= n2+6n+9-n2+2n-1

= 8n + 8

= 8(n+1) chia hết cho 8