K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

Gọi \(d=ƯCLN\left(m^2n+2m;mn+1\right)\) (\(d\in N\)*)

\(\Rightarrow\left\{{}\begin{matrix}m^2n+2m⋮d\\mn+1⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m^2n+2m⋮d\\m\left(mn+1\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m^2n+2m⋮d\\m^2n+m⋮d\end{matrix}\right.\)

\(\Rightarrow m⋮d\)

\(mn+1⋮d\)

\(\Rightarrow\left\{{}\begin{matrix}mn⋮d\\mn+1⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\)

\(d\in N\)*; \(1⋮d\Rightarrow d=1\)

\(\RightarrowƯCLN\left(m^2n+2m;mn+1\right)=1\)

Vậy \(ƯCLN\left(m^2n+2m;mn+1\right)=1\) với mọi \(m;n\in Z\)

Bài này hơi rắc rối, mk đã làm đầy đủ hết sức có thể!!

Có j ko hiểu bn coment nhs!!

Chúc bn học tốt!!

10 tháng 6 2017

Sư phụ ơi sai oy

24 tháng 7 2018

\(A=n\left(n+1\right)\left(2n+1\right)\)

Nhận thấy  \(n\left(n+1\right)\)là tích của 2 số nguyên liên tiếp nên  \(n\left(n+1\right)\)chia hết cho 2

=>  A chia hết cho 2

Nếu \(n=3k\)thì  A \(⋮\)\(3\)

Nếu \(n=3k+1\)thì:  \(2n+1=2\left(3k+1\right)+1=6k+3\)\(⋮\)\(3\)=>  \(A\)\(⋮\)\(3\)

Nếu \(n=3k+2\)thì \(n+1=3k+2+1=3k+3\)\(⋮\)\(3\)=>  \(A\)\(⋮\)\(3\)

vậy với mọi n nguyên ta đều có A chia hết cho 3

mà \(\left(2;3\right)=1\)

nên  A chia hết cho 6

24 tháng 7 2018

thank you vinamilk

15 tháng 11 2017

Mọi người ơi trả lời hộ mình câu 3 nhé. cám ơn nhiều

27 tháng 2 2016

Gọi (2n+1;2n(n+1))=d

=>2n+1 chia hết cho d;2n2+2n chia hết cho d

=>2n+1 chia hết cho d;2nn+n+n chia hết cho d

=>2n+1 chia hết cho d;n(2n+1)+n chia hết cho d

Mà n(2n+1) chia hết cho d

=>2n+1 chia hết cho d;n chia hết cho d

=>2n+1 chia hết cho d;2n chia hết cho d

=>(2n+1)-2n chia hết cho d

=>1 chia hết cho d

=>d=1

=>(2n+1;2n(n+1))=1

Vậy 2n+1/2n(n+1) là phân số tối giản (đpcm)

17 tháng 3 2018

toán lớp 6 bài gì vậy bạn trong nâng cao à

7 tháng 2 2019

đpcm<=> 5/9.14+5/14.19+...+5/(5n-1)(5n+4)<1/9

        <=>1/9-1/5n+4<1/9

        <=>5n-5/45n+36<1/9(đúng với mọi n>=2)

Vậy ddpcm là đúng

         

DD
11 tháng 3 2022

1) \(\left(3x+5y\right)\left(x+4y\right)⋮7\)

\(\Leftrightarrow\orbr{\begin{cases}3x+5y⋮7\\x+4y⋮7\end{cases}}\)

Ta có: \(\left(3x+5y\right)⋮7\Leftrightarrow5\left(3x+5y\right)=15x+25y=\left(x+4y\right)+2.7x+3.7y⋮7\)

\(\Leftrightarrow\left(x+4y\right)⋮7\)

Do đó \(\hept{\begin{cases}3x+5y⋮7\\x+4y⋮7\end{cases}}\)

Suy ra \(\left(3x+5y\right)\left(x+4y\right)⋮\left(7.7\right)\Leftrightarrow\left(3x+5y\right)\left(x+4y\right)⋮49\)(ta có đpcm) 

DD
11 tháng 3 2022

2) \(n^3-n=n\left(n^2-1\right)=n\left(n^2-n+n-1\right)=n\left[n\left(n-1\right)+\left(n-1\right)\right]\)

\(=n\left(n-1\right)\left(n+1\right)\)

Có \(n\left(n-1\right)\left(n+1\right)\)là tích của ba số nguyên liên tiếp mà trong ba số \(n-1,n,n+1\)có ít nhất một số chia hết cho \(2\), một số chia hết cho \(3\). Kết hợp với \(\left(2,3\right)=1\)

Suy ra \(n\left(n-1\right)\left(n+1\right)\)chia hết cho \(2.3=6\).