K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

ta có : Số n và số có tổng các chữ số bằng n có cùng số dư trong phép chia cho 9,do đó 11...11 -n chia hết cho 9(11..11 là số có n chữ số 1)

10 mủ n +18.n-1=10 mủ n -1 -9.n +27.n=99...9 -9.n +27 .n(99...9 là số có n chữ số 9)=9.(11...1-n)+27.n chia hết cho 27 (11..11 là số có n chữ số 1) 

Vậy ...

T I C K cho mình nha

1 tháng 5 2018

toán lớp 7 à sao mà khó vậy

22 tháng 11 2015

\(3^{n+2}-2 ^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n.10-2^n.5=3^n.10-2^{n-1}.10=\left(2^n-2^{n-1}\right).10\)   chia hết cho 10

8 tháng 5 2016

Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n] 

Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10) 

Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5) 

Suy ra S chia hết cho 10.

8 tháng 5 2016

\(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-2^{n+2}-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)=3^n.10-2^n.5=3^n.10-2^{n-1}.10=\left(3^n-2^{n-1}\right).10\)

luôn chia hết cho 10  (đpcm)

25 tháng 2 2017

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n\left(9+1\right)-2^{n-1}.2.\left(4+1\right)\)

\(=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\) (đpcm)

25 tháng 2 2017

Đặt S = 3^(n+2)-2^(n+2)+3^n-2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n] 
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10) 
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5) 
Suy ra S chia hết cho 10.

14 tháng 2 2016

moi hok lop 6 thoi

14 tháng 2 2016

Với n = 1, ta có 
1^3 + 9.1^2 + 2.1 = 12 chia hết cho 6 
Giả sử khẳng định đúng với n = k, tức là: 
k^3 + 9k^2 + 2k chia hết 6 
Đặt k^3 + 9k^2 + 2k = 6Q 
Ta sẽ CM khẳng định đúng với n = k + 1, ta có: 
(k + 1)^3 + 9(k + 1)^2 + 2(k + 1) 
= k^3 + 3k^2 + 3k + 1 + 9k^2 + 18k + 9 + 2k + 1 
= (k^3 + 9k^2 + 2k) + 3k^2 + 18k + 3k + 12 
= 6Q + (3k^2 + 21k) + 12 
= 6Q + 3k(k + 7) + 12 
= 6Q + 3k[(k + 1) + 6] + 12 
= 6Q + 3k(k + 1) + 6.3k + 12 
Vì k và k + 1 là 2 số nguyên liên tiếp nên: 
k(k + 1) chia hết cho 2 
=> 3k(k + 1) chia hết cho 3.2 = 6 
=> 6Q + 3k(k + 1) + 6.3k + 12 chia hết cho 6 
Vậy theo nguyên lý quy nạp ta chứng minh được 
n^3 + 9n^2 + 2n chia hết 3

24 tháng 2 2016

3^n+2-2^n+2+3^n-2^n

=3^n+2+3^n-(2^n+2+2^n)

=3^n(3^2+1)-2^n(2^2+1)

=3^n.10-2^n.5=3^n.10-2^n-1.10=10(3^n-2^n-1) chia hết cho 10(đpcm)

21 tháng 7 2015

Ta có:

10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)  = 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A

 Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).  

Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3.

Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).  

=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3

=> 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3

=> 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

22 tháng 11 2018

Ta có:

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(\left\{{}\begin{matrix}3^n.10⋮10\\2^n.5⋮10\end{matrix}\right.\)

Nên \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10

19 tháng 9 2016

Cho gửi nhờ đề

4 tháng 3 2020

Ta có:

4n+3 +4n+2 -4n+1 -4n 

=4n-1 .44 + 4n-1 . 43 - 4n-1 . 42 - 4n-1 .4 

=4n-1 . (44  +4- 42 -4) 

=4n-1 . 300 : 300 

= 4n+3  + 4n+2 -4n+1  -4n \(⋮\) 300 (ĐPCM)

4 tháng 3 2020

Đặt A=4^{n+3}+4^{n+2}-4^{n+1}-4^n

A= 4^n-1(4^4+4^3-4^2-4)

A=4^n-1.300⋮300

                  k cho mik nha                học tốt.

26 tháng 12 2015

Ta có:

3^n+2-2^n+2+3^n-2^n

=3^n+2+3^n-(2^n+2+2^n)

=3^n(3^2 +1)-2^n(2^2 +1)

=3^n.10-2^n.5=3^n.10-2^(n-1).10

=(3^n-2^(n-1)).10 chia het cho 10

Tick nhé