K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2018

áp dụng định lí fecma nhé bạn

26 tháng 10 2018

Theo định lí Fecma nhỏ,ta có:\(n^5-n\equiv0\left(mod5\right)\)

Do vậy \(n^5-n⋮5^{\left(đpcm\right)}\)

~ Học tốt nha bạn~

18 tháng 10 2018

   

      \(n^5-n\)

\(=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n^2-1\right)\left(n^2-4+5\right)\)

\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n^2-1\right)\)

Ta có số hạng đầu tiên là tích 5 số nguyên liên tiếp nên chia hểt cho 5, số hạng thứ 2 chia hết cho 5

Vậy \(n^5-n⋮5\)

22 tháng 7 2015

(n+7)2-(n-5)2

=[(n+7)+(n-5)][(n+7)-(n-5)]

=(n+7+n-5)(n+7-n+5)

=(2n+2).12

=2.(n+1).12

=24.(n+1) 

Vậy với mọi số nguyên n thì: (n+7)2 _ (n-5)2 chia hết cho 24 

12 tháng 6 2024

(n+7)^2-(n-5)^2

=n^2+14n+7^2-n^2+10n-5^2

=24n+24

24(n+1) chia hết cho 24

11 tháng 6 2020

Xét m,n có 1 số chia hết cho 5 thì A \(⋮\)5

Xét m,n  đều không chia hết cho 5

Ta có : với a \(⋮̸\)5 thì a có dạng : \(5k\pm1;5k\pm2\)

\(\Rightarrow a^4=\left(5k\pm1\right)^4=B\left(5\right)+1\)chia 5 dư 1

\(a^4=\left(5k\pm2\right)^4=B\left(5\right)+16=B\left(5\right)+1\)chia 5 dư 1

từ đó suy ra \(m^4\)chia 5 dư 1 ; \(n^4\)chia 5 dư 1

\(\Rightarrow m^4-n^4\)chia hết cho 5

\(\Rightarrow A⋮5\)

Vậy ....

11 tháng 6 2020

Ta có: \(A=mn\left(m^4-n^4\right)=mn\left(m^4-1\right)-mn\left(n^4-1\right)\)

Xét \(a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a^2-1\right)\left(a^2-4\right)+5a\left(a^2-1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a^2-1\right)⋮5\)với mọi a nguyên bất kì

=> \(nm\left(m^4-1\right)=n\left[m\left(m^4-1\right)\right]⋮5\)với m nguyên 

\(nm\left(m^4-1\right)=m\left[n\left(n^4-1\right)\right]⋮5\)với n nguyên 

=> \(A=mn\left(m^4-n^4\right)=mn\left(m^4-1\right)-mn\left(n^4-1\right)\) chia hết cho 5.

27 tháng 3 2016

1,

A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
 A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)

2 tháng 11 2016

(n+7)- (n-5)2 = n2+49 - n2+ 25 = 24 

vậy( n+7)- (n-5)2 chia hết cho 24