Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử phan số lớn hơn 1 la\(\frac{a}{b}\)(a,b\(\in\)N , a>b>0 ) và c số dương cộng vào tử và mẫu
Ta có : \(\frac{a+c}{b+c}\)= \(\frac{\left(a+c\right)\times b}{\left(b+c\right)\times b}\) = \(\frac{ab+cb}{\left(b+c\right)\times b}\)
\(\frac{a}{b}\)= \(\frac{a\times\left(b+c\right)}{b\times\left(b+c\right)}\)= \(\frac{ab+ac}{\left(b+c\right)\times b}\)
Ta có: Vì a>b nên : ac > cb
=> ab+cb<ab+ac => \(\frac{ab+cb}{\left(b+c\right)\times b}\) < \(\frac{ab+ac}{\left(b+c\right)\times b}\)
Do đó: \(\frac{a+c}{b+c}\)< \(\frac{a}{b}\)
Vậy bài toán đã được chứng minh
(Mi thì cũng ngơ ngơ như con vịt ,bài dễ mà ko biết làm)
Đặt lại yêu cầu đề bài :
So sánh hai phân số \(\frac{a}{b}\) và \(\frac{a}{c}\) với a, b, c \(\in\) N* và b < c.
Ta có \(\frac{a}{b}=\frac{ac}{bc}\) ; \(\frac{a}{c}=\frac{ab}{bc}\)
Do b < c và a > 0 nên ab < ac.
Vậy \(\frac{ac}{bc}>\frac{ab}{bc}\) tức là \(\frac{a}{b}>\frac{a}{c}\).
suy ra điều phải chứng minh.
gọi p/số tối giản lúc đầu là a/b
nếu chỉ cộng mẫu số ta đc p/s a/a+b , phân số này nhỏ hơn p/số a/b 2 lần
Để a+b/2b gấp 2 lần p/số lúc đầu thì a+b phải = 4 lần
=> mẫu số b phải gấp 3 lần tử số a
=> p/số tối giản thỏa mãn điều kiện đề bài là 1/3
- Gọi phân số tối giản cần tìm là : \(\frac{a}{b}\)
Theo đề bài : \(2.\frac{a}{b}=\frac{a+b}{b+b}\)
=) \(\frac{2a}{b}=\frac{a+b}{2b}\)
=) \(\frac{4a}{2b}=\frac{a+b}{2b}\)=) \(4a=a+b\)=) \(3a=b\)
Thay vào phân số cần tìm có dạng : \(\frac{a}{b}=\frac{a}{3a}=\frac{1}{3}\)( Vì \(3a=b\))
Vậy phân số cần tìm là : \(\frac{1}{3}\)
Câu 1 : Tìm tất cả các phân số bằng phân số \(\frac{-32}{48}\) và có mẫu là số tự nhiên nhỏ hơn 15