Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, gọi 3 số tự nhiên liên tiếp là a;a+1;a+2 (a thuộc N)
+ xét a chia hết cho 3 (đpcm)
+ xét a chia 3 dư 1 => a = 3k + 1
=> a + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) chia hết cho 3
+ xét a chia 3 dư 2 => a = 3k + 2
=> a + 1 = 3k + 2 + 1 = 3k + 3 = 3(k + 1) chia hết cho 3
vậy trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
b, đề không rõ lắm
Ta có: \(17^n;17^n+1;17^n+2\) là 3 số nguyên liên tiếp nên luôn có 1 số chia hết cho 3
\(\Rightarrow17^n\left(17^n+1\right)\left(17^n+2\right)⋮3\)
\(\Rightarrow\left(17^n+1\right)\left(17^n+2\right)⋮3\left(17^n⋮̸3\right)\)
=> A \(⋮3\left(ĐPCM\right)\)
A = ( 17^n + 1 )( 17^n + 2 )
=> A = ( 17^n x 17^n + 17^n )+( 2 x 17^n + 2 )
=> A = 17^n x 17^n + 17^n + 2 x 17^n + 2 ( bỏ dấu ngoặc )
=> A= 17^n x 17^n + ( 17^n +2 x 17^n ) +2
=> A= 17^n x 17^n + 3 x 17^n + 2
Mà 3 x 17^n chia hết cho 3
=> Tích A chia hết cho 3
a/ (3n)100=(3n)4.25=(81n)25 chia hết cho 81.
b/ tao biết mà tự làm đi dễ lắm
c/ dựa vào dấu hiệu chia hết cho 9
b) \(\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+.........+\left(3^{28}+3^{29}+3^{30}\right)\)
\(3\left(13\right)+3^4\left(13\right)+..........+3^{28}\left(13\right)\)
\(13\left(3+3^4+.........+3^{28}\right)⋮13\)
c/ \(10^{2015}+17\)
\(10^{2015}+17=1000.........00000000+17\)
\(=10000......0000017\)
\(1+0+0+0+0+....0+1+7=9⋮9\)
Áp dụng a^n-b^n chia hết cho a-b với mọi n là số tự nhiên :a^n-1+b^n-1 chia hết cho a+b với mọi n là số tự nhiên
Đổi7^4n=2401^n nưa là ra 3 câu
a) 74n có tận cùng là 1 và số có tận cùng là 1 ( 74n) khi trừ đi 1 sẽ có tận cùng là 0 ( ..... 1 - 1 =........0 )nên chia hết cho 5
b) 34n có tận cùng là 1 , tận cùng là 1 cộng với 1 với 2 sẽ có tận cùng là 4 ( .......1 + 1+2 = ........4 ) nên không chia hết cho 5
Bạn đừng thắc mắc tại sao mìn biết 7 4n và 3 4n có tận cùng là 1 , cái này cô giáo dạy mìn rùi , kiểu dạng có công thức ấy mà ... Tóm lại , đừng thắc mắc nha
Tick nha , lần sau mìn giúp tiếp
a) Gọi 3 số tự nhiên liên tiếp là \(x,x+1,x+2\left(x\in N\right)\)
- Nếu \(x=3k\) ( thỏa mãn ). Nếu \(x=3k+1\) thì \(x+2=3k+1+2=\left(3k+3\right)⋮3\)
- Nếu \(x=3k+2\) thì \(x+1=3k+1+2=\left(3k+3\right)⋮3\)
Vậy trong 3 số tự nhiên liên tiêp có 1 số chia hết cho 3.
b) Nhận thấy \(17^n,17^n+1,17^n+2\) là 3 số tự nhiên liên tiếp mà \(17^n\) không chia hết cho 3, nên trong 2 số còn lại 1 số phải \(⋮3\)
Do vậy: \(A=\left(17^n+1\right)\left(17^n+2\right)⋮3\)
a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp
=> m(m+1)(m-1) chia hết cho 3 và 2
Mà (3,2) = 1
=> m(m+1)(m-1) chia hết cho 6
=> m^3 - m chia hết cho 6 V m thuộc Z
b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8
=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z
Tick nha pham thuy trang
a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6
mk chỉ biết có thế thôi