Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^3/b +a^3/b +b^2 >=3.a^2
=>2a^3/b +b^2>=3a^2
tương tự
2b^3/c +c^2 >=3.b^2
2c^3/a +a^2 >=3.c^2
cộng lại ta được
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2)
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2
mặt khác
a^2+b^2+c^2>=ab+bc+ca
nên
a^3/b+b^3/c+c^3/a >=ab+bc+ca
dấu = xảy ra khi a=b=c
11/Theo BĐT AM-GM,ta có; \(ab.\frac{1}{\left(a+c\right)+\left(b+c\right)}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)\(=\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)
Tương tự với hai BĐT kia,cộng theo vế và rút gọn ta được đpcm.
Dấu "=" xảy ra khi a= b=c
Ơ vãi,em đánh thiếu abc dưới mẫu,cô xóa giùm em bài kia ạ!
9/ \(VT=\frac{\Sigma\left(a+2\right)\left(b+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(=\frac{ab+bc+ca+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+8+abc+\left(ab+bc+ca\right)}\)
\(\le\frac{ab+bc+ca+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+9+3\sqrt[3]{\left(abc\right)^2}}\)
\(=\frac{ab+bc+ca+4\left(a+b+c\right)+12}{ab+bc+ca+4\left(a+b+c\right)+12}=1\left(Q.E.D\right)\)
"=" <=> a = b = c = 1.
Mong là lần này không đánh thiếu (nãy tại cái tội đánh ẩu)
a) Do A + B + C = 180 độ nên góc A bù với góc B + C => sin(B + C) = sinA (sin hai góc bù bằng nhau)
(A + B)/2 + C/2 = 90 độ => hai góc (A + B)/2 và C/2 là hai góc phụ nhau => cos (A + B)/2 = sin(C/2) (Chắc đề bài bạn cho nhầm thành sinC)
b) Bạn xem lại đề nhé
c) \(sin^6a+cos^6a+3sin^2a.cos^2a=\left(sin^2a\right)^3+\left(cos^2a\right)^3+3.sin^2a.cos^2a\)
= \(\left(sin^2a+cos^2a\right)\left(sin^4a+cos^4a-sin^2a.cos^2a\right)+3sin^2a.cos^2a\)
= \(sin^4a+cos^4a+2sin^2a.cos^2a\)
= \(\left(sin^2a+cos^2a\right)^2=1\)
15.
Ta có \(a+b+c+ab+bc+ac=6\)
Mà \(ab+bc+ac\le\left(a+b+c\right)^2\)
=> \(\left(a+b+c\right)^2+\left(a+b+c\right)-6\ge0\)
=> \(a+b+c\ge3\)
\(A=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\ge3\)(ĐPCM)
Bài 18, Đặt \(\left(a^2-bc;b^2-ca;c^2-ab\right)\rightarrow\left(x;y;z\right)\) thì bđt trở thành
\(x^3+y^3+z^3\ge3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\ge0\)
\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)
Vì \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)nên ta đi chứng minh \(x+y+z\ge0\)
Thật vậy \(x+y+z=a^2-bc+b^2-ca+c^2-ab\)
\(=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)(đúng)
Tóm lại bđt được chứng minh
Dấu "=": tại a=b=c
Xét tam giác ABM và tam giác ACM có
AB = AC (gt)
AM là cạnh chung
BM = MC ( gt )
\(\Rightarrow\) Tam giác ABM bằng tam giác ACM ( c.c.c)
B=\(\dfrac{A}{3}\) ,C=\(\dfrac{A}{6}\)
⇒\(\dfrac{A}{18}\) =\(\dfrac{B}{6}\) =\(\dfrac{C}{3}\)= và A+B+C=180o
áp dụng tính chất của dãy tỉ số =nhau ,ta có :
\(\dfrac{A}{18}\)=\(\dfrac{B}{6}\) =\(\dfrac{C}{3}\) =\(\dfrac{A+B+C}{18+6+3}\) =\(\dfrac{20}{3}\)
⇒\(\dfrac{A}{18}\) = \(\dfrac{20}{3}\)⇒ A= 20/3 x 18 = 120o
\(\dfrac{B}{6}\) =\(\dfrac{20}{3}\) ⇒ B=\(\dfrac{20}{3}\) x 6 = 40o
C = 180o-(120o+40o)=20o
Ta có \(\left(a+b+c\right)\left(ab+bc+ca\right)=a^2b+abc+a^2c+ab^2+b^2c+abc+abc+bc^2+ac^2=a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc\left(1\right)\)
Ta lại có \(abc+\left(a+b\right)\left(b+c\right)\left(c+a\right)=abc+\left(ab+ac+b^2+bc\right)\left(c+a\right)=abc+abc+a^2b+ac^2+a^2c+b^2c+b^2a+bc^2+abc=a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc\left(2\right)\)
Từ (1),(2)\(\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)=abc+\left(a+b\right)\left(b+c\right)\left(c+a\right)\)