K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

cái này là bổ đề tui c/m rùi mà =="

31 tháng 10 2019

\(a_n=\frac{2}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(n+1-n\right)}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+n+1}\)

\(< \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

\(a_1+a_2+a_3+...+a_{2009}< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...-\frac{1}{\sqrt{2010}}=1-\frac{1}{\sqrt{2010}}< \frac{2008}{2010}\)

28 tháng 5 2018

ÁP DỤNG BĐT Cauchy ta có : 

\(\text{a}_1+\text{a}_2+...+\text{a}_n\ge n^n\sqrt{\text{a}_1.\text{a}_2....\text{a}_n}\)  (1) 

\(\frac{1}{\text{a}_1}+\frac{1}{\text{a}_2}+...+\frac{1}{\text{a}_n}\ge n^n\sqrt{\frac{1}{\text{a}_1}\cdot\frac{1}{\text{a}_2}\cdot...\cdot\frac{1}{\text{a}_n}}\)(2) 

Nhân (1) và (2) vế với vế tương ứng ta có được BĐT (*) 

Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}\text{a}_1=\text{a}_2=...=\text{a}_n\\\frac{1}{\text{a}_1}=\frac{1}{\text{a}_2}=...=\frac{1}{\text{a}_n}\end{cases}}\)

                             \(\Leftrightarrow\text{a}_1=\text{a}_2=...=\text{a}_n\)

Áp dụng bất đẳng thức Cô - si với n số dương ta được 

\(a_1+a_2+...+a_n\ge n\sqrt[n]{a_1.a_2....a_n}\)

\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\ge n\sqrt[n]{\frac{1}{a_1}.\frac{1}{a_2}....\frac{1}{a_n}}\)

Suy ra \(\left(a_1+a_2+...+a_n\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\right)\ge n^2.\sqrt[n]{1}=n^2\)

(dấu "=" xẩy ra <=> a1=a2 =...=an)

11 tháng 9 2017

Theo bat dang thuc cauchy ta co

a1+a2+...+an lon hon hoc bang n.can bac n cua (a1.a2....an) (1)

1/a1+1/a2...1/an lon hon hoac bang n.1/can bac n cua (a1.a2...an) (2)

Nhan 2 ve (1) va (2) ta duoc

(a1+a2+...+an).(1/a1+1/a2+...1/an) lon hon hoac bang n tren ​​2

=>1/a1+1/a2+...1/an lon hon hoac bang n tren 2/a1+a2+...+an

Dau bang xay ra khi a1=a2=...=an

Mk giai co hieu ko