K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

Gọi d là ƯC(12n+1,30n+1)                 (d thuộc N*)

=> 12n+1 chia hết cho d;30n+1 chai hết cho d

=>5(12n+1) chia hết cho d;2(30n+1) chia hết cho d

    60n+5 chai hết cho d;60n+2 chia hết cho d

=>(60n+5)-(60n+2) chia hết cho d

    60n+5-60n-2      chia hết cho d

    (60n-60n)+(5-2)  chia hết cho d

                      3     chia hết cho d

       => d thuộc {1;3}

       Hay ƯC(12n+1;30n+1) thuộc {1;3}

Mà 12n+1 và 30n+1 không chia hết cho 3 vì:

12n và 30n chia hết cho 3

Mà 1 không chia hết cho 3 nên 12n+1 và 30n+1 không chia hết cho 3

Do đó ƯC(12n+1;30n+1) thuộc {1}

         => ƯCLN(12n+1;30n+1) = 1

   Vậy ƯCLN(12n+1;30n+1) = 1 (với n thuộc N)

 

7 tháng 1 2016

12n+1 / 30n+1 tới giản

suy ra ĐPCM

8 tháng 12 2018

Bài toán khá hay, giải bài này như sau:

Giả sử \(\left(12n+1,30n+1\right)=d\left(d\inℕ\right)\)

Ta có:

        \(5\left(12n+1\right)=60n+5⋮d\)     (1)

         \(2\left(30n+1\right)=60n+2⋮d\)    (2)

Lấy (1) trừ (2);

\(60n+5-\left(60n+2\right)=3⋮d\)

Do 12n+1 và 30n+1 không chia hết cho 3 nên d=1.

Vậy \(\left(12n+1,30n+1\right)=1\)

14 tháng 4 2017

Giả sử cả 12n+1 và 30n+2 đều chia hết cho d

=> 12n+1 chia hết cho d và 30n+2 chia hết cho d

=> 5(12n+1) chia hết cho d và 2(30n+2) chia hết cho d

=> 60n+5 chia hết cho d và 60n+4 chia hết cho d

=> 60n+5-60n-4 chia hết cho d

<=> 1 chia hết cho d

=> d=1

Vậy \(\frac{12n+1}{30n+2}\)là tối giản với mọi n thuộc N

16 tháng 10 2016

Muốn chứng minh hai số là nguyên tố cùng nhau thì ta chứng minh ước chung lớn nhất của chúng bằng 1.

Thật vậy, Giả sử d là ước chung của 3n + 2 và 12n + 5 .

=> d là ước của 3n + 2 => d là ước của (3n+2).4 = 12n + 8 

=> d là ước của (12n + 8) - (12n + 5) = 3 => d là ước của 3n

=> d là ước của (3n + 2) - 3n = 2

Vì d vừa là ước của 3 và 2 nên d = 1.

2 tháng 12 2017

Gọi UCLN(2n+5,3n+7)là d(d\(\in N) \)

Ta có \(\begin{cases}2n+5 \vdots d \\3n+7 \vdots d \end{cases}\)<=>\(\begin{cases}6n+15 \vdots d \\6n+14 \vdots d \end{cases}\)

=> 6n+15-6n-14\(\vdots d\)

\(=> 1\vdots d \)

=> d \(\in Ư(1)=(1)\)

Vậy d=1

9 tháng 8 2018

Gọi d = ƯCLN ( 2n + 5 , 3n + 7 ) . ⇒ 2n + 5 ⋮ d ; 3n + 7 ⋮ d . ⇒ 3 * ( 2n + 5 ) ⋮ d ; 2 * ( 3n + 7 ) ⋮ d . ⇒ 6n + 15 ⋮ d ; 6n + 15 ⋮ d . ⇒ ( 6n + 15 ) - ( 6n + 15 ) ⋮ d . ⇒ 1 ⋮ d . ⇒ d ∈ Ư ( 1 ) = { -1 ; 1 } . Vì d lớn nhất nên d = 1 . Vậy bài toán được chứng minh .

2 tháng 12 2017

a) ƯCLN(4n+1; 5n+1) = 1

Gọi UCLN(4n+1; 5n+1) = d

\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\5n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}5.\left(4n+1\right)⋮d\\4.\left(5n+1\right)⋮d\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}20n+5⋮d\\20n+4⋮d\end{cases}}\)

\(\Rightarrow\left(20n+5\right)-\left(20n+4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\RightarrowƯCLN\left(4n+1;5n+1\right)=1\)

b) UCLN(2n+1;2n+3) =1

Gọi UCLN(2n+1; 2n+3) = d

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\left(2n+1\right)-\left(2n+3\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow d\inƯ\left(2\right)=\left\{1;2\right\}\)

Nếu d = 2 thì \(2n⋮2\)

Nhưng 3 không chia hết cho 2, Vậy k thoả màn điều kiện chia hết cho d

Nếu d = 1 => Thoả mãn điều kiện chia hết 

=> UCLN(2n+1; 2n+3) = 1

c) n.(n+5) chia hết cho 2 vs mọi n thuộc N

Th1: n là số chẵn

=> n + 5 là số lẻ

=> chẵn . lẻ = chẵn chia hết cho 2

Th2: n là số lẻ

=> n + 5 là số chẵn

=> chẵn . lẻ = chẵn chia hết cho 2

Vậy vs mọi n thuộc N, n(n + 5) chia hết cho 2

THANKS!!!!!!!!!!!!!!!!!!!!!!!

11 tháng 7 2019

Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23

=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)

Ta có: 2n (n+2) chia hết cho 2

=> 2n (n+2) là số chẵn

Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản

=> 6 / n - 23 / 2n (n+2) là phân số tối giản

Vậy 12n+1 / 2 (n+2) là phân số tối giản